進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201915375900
論文名稱(中文) 具波傳導向機制之彈性超穎介面分析與設計
論文名稱(英文) Analysis and design of elastic metasurfaces with wave manipulation effect
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 呂孟學
研究生(英文) Meng-Hsueh Lu
學號 N66061040
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 口試委員-葉超雄
口試委員-吳光鐘
口試委員-馬劍清
口試委員-蘇于琪
指導教授-陳東陽
中文關鍵字 超穎介面  廣義司乃耳定律  波傳導向  相位 
英文關鍵字 metasurfaces  generalized Snell’s law  wave manipulation  phase 
學科別分類
中文摘要 近年來不少學者投入超穎介面(metasurfaces)的相關研究,由於其特殊的設計方式,使波在經過微小尺度的介面結構時會發生轉向的現象。為了設計出能夠使波傳導向的超穎介面,本論文探討其導向機制以及各參數之影響,首先對波在不同介質傳遞之物理現象進行了研究,接著我們介紹超穎介面之導向原理以及其理論–廣義司乃耳定律,藉由調控介面內週期材料的性質,影響波在介面傳遞的相位,進而導致波的導向。再來我們介紹超穎介面之設計方向與方法,並設計簡易的聲波及彈性波超穎介面,而本文利用有限元素軟體來展示設計之聲波及彈性波超穎介面的波傳導向效果並探討各參數之影響。最後再簡述設計新型超穎介面之困難以及未來可以努力的方向。
英文摘要 The concept of metasurfaces has renewed Snell’s law and opened new directions to manipulate wave due to its novel wavefront shaping functionalities. In order to design elastic metasurfaces that are able to control wave propagation, the physical phenomena of wave transmission in different media and the concept of metasurfaces are discussed. We propose two simple designs of acoustic and elastic metasurfaces based on generalized Snell’s law. The metasurfaces are designed with periodically repeated supercells, in which the frequency dependent properties of the subunit are used to control a phase gradient along the interface. Numerical simulation shows their ability to manipulate wave. We also investigate the effects of some parameters. Our research not only discusses the concept of metasurfaces in detail, but also demonstrates the feasibility of controlling acoustic wave and elastic body waves by metasurfaces.
論文目次 中文摘要 i
Abstract iii
誌謝 vii
目錄 ix
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1 文獻回顧與相關研究 1
1.2 研究動機 3
1.3 論文簡介 3
第二章 波的傳遞與超材料的應用 5
2.1 波的簡介 5
2.2 光的費馬原理(Fermat’s principle)與司乃耳定律(Snell’s law) 6
2.3 電磁波與彈性波的司乃耳定律 10
2.3.1 電磁波(electromagnetic waves)的波傳 11
2.3.2 彈性波(elastic wave)的波傳 15
2.4 雙負電磁超材料的負折射 17
2.4.1 雙負左手材料 17
2.4.2 電磁波的負折射 19
2.5 雙負彈性超材料的負折射 23
2.5.1 雙負超材料的相速度與群速度 24
2.5.2 SH波的負折射 24
2.5.3 P波的負折射 28
第三章 超穎介面與廣義司乃耳定律 35
3.1 超穎介面的簡介 35
3.2 廣義司乃耳定律(Generalized Snell’s law) 35
3.2.1 波的相位 35
3.2.2 以費馬原理推導廣義司乃耳定律 37
3.2.3 以邊界條件推導廣義司乃耳定律 39
3.3 以惠更斯原理圖解廣義司乃耳定律及超穎介面 41
3.3.1 惠更斯原理(Huygens principle) 42
3.3.2 一般均質介質內之相位變化 44
3.3.3 超穎介面內之相位變化 46
第四章 彈性超穎介面之設計與模擬 51
4.1 超穎介面之設計方向與方法 51
4.2 由材料參數來操縱波傳之聲波超穎介面 55
4.2.1 聲波方程式 55
4.2.2 聲波超穎介面之設計 56
4.2.3 聲波超穎介面之全域模擬 59
4.2.4 小結 74
4.3 由介面內材料厚度比例來操縱的彈性超穎介面 74
4.3.1 彈性體波之廣義司乃耳定律 74
4.3.2 彈性超穎介面之設計 78
4.3.3 彈性波超穎介面之全域模擬 81
4.3.4 小結 88
第五章 結論與未來展望 91
5.1 結論 91
5.2 未來展望 93
參考文獻 95
附錄A :彈性固體的平面諧波波傳模式 99

參考文獻 Achenbach, J. D., Wave Propagation in Elastic Solids, North-Holland Pub. Co., 1973.
Bóna, A. and M. A. Slawinski, Fermat's principle for seismic rays in elastic media, Journal of Applied Geophysics 54(3-4): 445-451, 2003.
Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.
Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Dover Publications, 1953.
Brorson, S. D. and H. A. Haus, Diffraction gratings and geometrical optics, JOSA B 5(2): 247-248, 1988.
Cao, L., Z. Yang and Y. Xu, Steering elastic SH waves in an anomalous way by metasurface, Journal of Sound and Vibration 418: 1-14, 2018.
Epstein, M. and J. Śniatycki, Fermat's principle in elastodynamics, Journal of Elasticity 27(1): 45-56, 1992.
Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, Ultrasonic metamaterials with negative modulus, Nature Materials 5(6): 452, 2006.
Feynman, R. P. and A. R. Hibbs. Quantum Mechanics and Path Integrals, McGraw-Hill, 1965.
Gatti, P. L., Applied Structural and Mechanical Vibrations: Theory and Methods, CRC Press, 2014.
Graff, K. F., Wave Motion in Elastic Solids, Dover Publications, 1975.
Hecht, E., Optics, Pearson Education, 2016.
Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall, 1952.
Huang, H.-H. and C.-T. Sun, Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus, The Journal of the Acoustical Society of America 132(4): 2887-2895, 2012.
Huang, L., X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf and S. Zhang, Dispersionless phase discontinuities for controlling light propagation, Nano Letters 12(11): 5750-5755, 2012.
Huygens, C., Treatise on Light, tredition, 2012.
Kildishev, A. V., A. Boltasseva and V. M. Shalaev, Planar photonics with metasurfaces, Science 339(6125): 1232009, 2013.
Kinsler, L. E., A. R. Frey, A. B. Coppens and J. V. Sanders. Fundamentals of Acoustics, Wiley, 1999.
Lee, H., J. K. Lee, H. M. Seung and Y. Y. Kim, Mass-Stiffness substructuring of an elastic metasurface for full transmission beam steering, Journal of the Mechanics and Physics of Solids 112: 577-593, 2018.
Li, Y., X. Jiang, R.-q. Li, B. Liang, X.-y. Zou, L.-l. Yin and J.-c. Cheng, Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces, Physical Review Applied 2(6): 064002, 2014.
Li, Y., B. Liang, Z.-m. Gu, X.-y. Zou and J.-c. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Scientific Reports 3: 2546, 2013.
Liu, Y., Z. Liang, F. Liu, O. Diba, A. Lamb and J. Li, Source illusion devices for flexural Lamb waves using elastic metasurfaces, Physical Review Letters 119(3): 034301, 2017.
Liu, Z., X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, Locally resonant sonic materials, Science 289(5485): 1734-1736, 2000.

Ma, G., M. Yang, S. Xiao, Z. Yang and P. Sheng, Acoustic metasurface with hybrid resonances, Nature Materials 13(9): 873, 2014.
Maxwell, J. C., VIII. A dynamical theory of the electromagnetic field, Philosophical Transactions of the Royal Society of London (155): 459-512, 1865.
Mei, J. and Y. Wu, Controllable transmission and total reflection through an impedance-matched acoustic metasurface, New Journal of Physics 16(12): 123007, 2014.
Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85(18): 3966, 2000.
Pendry, J. B., A. Holden, W. Stewart and I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76(25): 4773, 1996.
Pendry, J. B., A. J. Holden, D. J. Robbins and W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47(11): 2075-2084, 1999.
Pennec, Y., B. Djafari‐Rouhani, H. Larabi, J. Vasseur and A. C. Hladky‐Hennion, Phononic crystals and manipulation of sound, Physica Status Solidi C 6(9): 2080-2085, 2009.
Shen, X., C.-T. Sun, M. V. Barnhart and G. Huang, Elastic wave manipulation by using a phase-controlling meta-layer, Journal of Applied Physics 123(9): 091708, 2018.
Su, X., Z. Lu and A. N. Norris, Elastic metasurfaces for splitting SV-and P-waves in elastic solids, Journal of Applied Physics 123(9): 091701, 2018.
Su, X. and A. N. Norris, Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps, The Journal of the Acoustical Society of America 139(6): 3386-3394, 2016.
Su, Y.-C., Design of elastic metamaterials, Purdue University, 2015.
Su, Y.-C. and C.-T. Sun, Wave Amplification in Double Negative Elastic Metamaterials, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015.
Sun, S., Q. He, S. Xiao, Q. Xu, X. Li and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nature Materials 11(5): 426, 2012.
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi 10(4): 509, 1968.
Wang, Z., Y. Sun, L. Han and D. Liu, General laws of reflection and refraction for subwavelength phase grating, arXiv preprint arXiv:1312.3855, 2013.
Xie, Y., W. Wang, H. Chen, A. Konneker, B.-I. Popa and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nature Communications 5: 5553, 2014.
Xu, T., C. Wang, C. Du and X. Luo, Plasmonic beam deflector, Optics Express 16(7): 4753-4759, 2008.
Yourgrau, W. and S. Mandelstam. Variational Principles in Dynamics and Quantum Theory, Courier Corporation, 1979.
Yu, N. and F. Capasso, Flat optics with designer metasurfaces, Nature Materials 13(2): 139, 2014.
Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054): 333-337, 2011.

黃瑜琛,利用等效介質理論探討超材料在不同物理模式之尺度關聯,國立成功大學土木所碩士論文,2018。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw