進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201914413900
論文名稱(中文) 利用水玻璃製備氧化矽層包覆鐵矽鉻合金粉末之電磁特性研究
論文名稱(英文) Electromagnetic properties of Fe-Si-Cr alloy powder surface-modified with water glass
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 王思凱
研究生(英文) Ssu-Kai Wang
學號 N46061185
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-向性一
口試委員-曾文甲
口試委員-許志雄
口試委員-陳智成
口試委員-葉輝邦
中文關鍵字 水玻璃  鐵矽鉻  磁損失  直流疊加特性  電感 
英文關鍵字 water glass  Fe-Si-Cr alloy  magnetic loss  DC bias superposition characteristic  inductors 
學科別分類
中文摘要 本實驗主要探討材料之殼層結構對於功率電感器性能之影響,本研究以平均粒徑10"μ" m的Fe-Si-Cr合金粉末作為原料,並在合金粉末外層包覆一層奈米級的氧化矽絕緣層。藉由在顆粒外層包覆一層絕緣層來提高材料之電阻值,並有效降低磁損失中的渦流損失(eddy current loss)與提升材料之直流疊加特性。
本研究使用矽酸鈉(Sodium silicate)作為生成非晶質氧化矽的反應物,將矽酸鈉溶於去離子水後與鐵矽鉻合金粉末進行混和,並通入二氧化碳氣體使合金粉末表面生成非晶質的氧化矽層。從穿透式電子顯微鏡(TEM)中發現附著於顆粒表面的非晶質氧化矽層約為20nm-50nm,且當水玻璃添加量增加氧化矽層增厚。由實驗結果發現,當鐵矽鉻合金粉末表面披覆氧化矽層,材料之抗氧化能力、電阻值與直流疊加特性皆因氧化矽層增厚而提升,然而在鐵矽鉻合金系統中,當頻率在3MHz以下時磁損失皆由磁滯損失所主導,因此添加矽酸鈉反而增加其矯頑力使整體磁損失上升。
英文摘要 The effects of FeSiCr alloy powder@SiO2 on the electric and magnetic properties were studied. Fe-Si-Cr alloy powder with an average particle size of 10 μm was coated with nano-sized silica powder to increase the resistivity and DC bias superposition characteristic.
In this study, sodium silicate was used as a precursor to form the amorphous silica on the surface of FeSiCr alloy powder. FeSiCr alloy powder was mixed with sodium silicate solution and then carbon dioxide was injected to form an amorphous silica layer on the surface of the alloy powder. Transmission electron microscope was used to investigate the amorphous silica layer. It shows that the thickness of insulating layer was about 20 nm to 50 nm, and the thickness can be controlled by the amount of sodium silicate. The amorphous silica layer can significantly promote the anti-oxidation, resistivity and DC bias superposition characteristic. The magnetic loss is dominated by the hysteresis loss while the frequency is below 3 MHz. The coercive force increased with increasing the SiO2 content, which led to the increase in total magnetic loss.
論文目次 摘要 I
致謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 前人研究 3
2-1 金屬功率電感器 3
2-1-1 電感器介紹 3
2-1-2 電感器種類 4
2-1-3 電感器特性 6
2-2 軟磁材料 18
2-2-1 鐵粉種類 18
2-2-2 矽鉻合金特性 20
2-3 包覆膜研究進展 21
2-3-1 包覆膜介紹與方法 21
2-3-2 水玻璃特性 24
第三章 實驗步驟與方法 28
3-1 實驗流程 28
3-2 鐵矽鉻坯體成型及其熱處理 28
3-3 樣品特性分析 31
3-3-1 掃描式電子顯微鏡(SEM) 31
3-3-2 熱重/熱差分析 31
3-3-3 傅立葉轉換紅外線光譜儀(FTIR) 31
3-3-4 直流電阻率分析 31
3-3-5 磁性質分析 32
3-3-6 直流疊加分析 32
3-3-7 磁損失分析 33
3-3-8 超導量子干涉震動磁量儀 33
3-3-9 X光光電子能譜儀(X-Ray Photoelectron Spectrometer) 33
3-3-10 穿透式電子顯微鏡 33
第四章 結果與討論 34
4-1 表層氧化矽相鑑定 34
4-1-1 傅立葉轉換紅外線光譜儀分析 34
4-1-2 XPS縱深分析 35
4-1-3 穿透式電子顯微鏡分析 41
4-2 物理性質分析 46
4-2-1 熱重分析 46
4-2-2 電阻與崩潰電壓分析 47
4-2-3 飽和磁化量分析 50
4-2-4 初導磁係數分析 52
4-2-5 磁損失分析 54
4-2-6 直流疊加特性分析 59
第五章 結論 61
第六章 參考文獻 62

參考文獻 [1] R. Wu and J. K. O. Sin, A Novel Silicon-Embedded Coreless Inductor for High-Frequency Power Management Applications, IEEE Electron Device Letters, 32, 60-62, 2011.
[2] J. Long, M. McHenry, D. P. Urciuoli, V. Keylin, J. Huth and T. E. Salem, Nanocrystalline material development for high-power inductors, Journal of Applied Physics, 103, 2008.
[3] P. Kollár, Z. Birčáková, J. Füzer, R. Bureš and M. Fáberová, Power loss separation in Fe-based composite materials, Journal of Magnetism and Magnetic Materials, 327, 146-150, 2013.
[4] F. He, X. Wang and D. Wu, New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor, Energy, 67, 223-233, 2014.
[5] M. Wake, D. Gross, R. Yamada and D. Blatchley, AC loss in energy doubler magnets, IEEE Transactions on Magnetics, 15, 141-142, 1979.
[6] T. Witoon, N. Tatan, P. Rattanavichian and M. Chareonpanich, Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent, Ceramics International, 37, 2297-2303, 2011.
[7] 湯士源、唐敏注, 電源模組用金屬功率電感器技術簡介, 工業材料雜誌349期, 2016.
[8] 鄭明得, 薄型大電流電感器鐵芯粉末調配之穩健最佳化設計, 中國機械工程學會第二十六屆全國學術研討會論文集, 2009.
[9] 柯文淞, 晶片電感,晶片型電子陶瓷材料及元件技術, 工業技術研究院, 1993.
[10] TDK, Multilayer Chip Inductor MLG0402Q/MLG0603P, Tech Journal, 2011.
[11] 呂秉軍, 離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響, 國立成功大學資源工程學系,碩士論文, 2012.
[12] 粘孝先, 軟磁錳鋅鐵氧鐵芯鐵損之分析, 國立成功大學電機工程學系,博士論文, 2007.
[13] 方信喬, 添加劑對錳鋅鐵氧磁體低損失最佳化之研究, 大同大學材料科學研究所,碩士論文, 2006.
[14] 謝定洲, 粗細鐵粉混合比例對壓粉磁蕊磁性質之影響, 國立台灣科技大學材料科技研究所,碩士學位論文, 2009.
[15] H. Shokrollahi and K. Janghorban, Soft magnetic composite materials (SMCs), Journal of Materials Processing Technology, 189, 1-12, 2007.
[16] 汪建民, 粉末冶金技術手冊, 中華民國粉末冶金協會, 1994.
[17] S. F. Chen, H. Y. Chang, S. J. Wang, S. H. Chen and C. C. Chen, Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment, Journal of Alloys and Compounds, 637, 30-35, 2015.
[18] X. Wang, J. Li, N. Zhang, J. Xie, D. Liang and L. Deng, Evolution of hyperfine structure and magnetic characteristic in Fe-Si-Cr alloy with increasing heat treatment temperature, Materials & Design, 96, 314-322, 2016.
[19] L.-F. Fan, H.-I. Hsiang and J.-J. Hung, Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs, Applied Surface Science, 433, 133-138, 2018.
[20] 中野正充, 壓粉磁芯, 日本專利6-29114, 1994.
[22] J.M.Capus, PM soft magnets in new applications, Metal Powder Report, 57, 20-21, 2002.
[23] S. Rebeyrat, J. Grosseau-Poussard, J. Dinhut and P. Renault, Oxidation of phosphated iron powders, Thin Solid Films, 379, 139-146, 2000.
[24] W. Stöber, A. Fink and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of colloid and interface science, 26, 62-69, 1968.
[25] C. Boissière, A. Van Der Lee, A. El Mansouri, A. Larbot and E. Prouzet, A double step synthesis of mesoporous micrometric spherical MSU-X silica particles, Chemical Communications, 2047-2048, 1999.
[26] V. V. Hardikar and E. Matijević, Coating of nanosize silver particles with silica, Journal of colloid and interface science, 221, 133-136, 2000.
[27] A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas and A. Kareiva, FTIR, TEM and NMR investigations of Stöber silica nanoparticles, Mater Sci (Medžiagotyra), 10, 287-290, 2004.
[28] Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang and S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262, 87-93, 2005.
[29] O. K. Park and Y. S. Kang, Preparation and characterization of silica-coated TiO2 nanoparticle, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 257, 261-265, 2005.
[30] S.-F. Wang, Y.-F. Hsu, T. C. Yang, C.-M. Chang, Y. Chen, C.-Y. Huang and F.-S. Yen, Silica coating on ultrafine α-alumina particles, Materials Science and Engineering: A, 395, 148-152, 2005.
[31] J. He, S. Fujikawa, T. Kunitake and A. Nakao, Preparation of porous and nonporous silica nanofilms from aqueous sodium silicate, Chemistry of materials, 15, 3308-3313, 2003.
[32] T. Ung, L. M. Liz-Marzán and P. Mulvaney, Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions, Langmuir, 14, 3740-3748, 1998.
[33] M. Stachowicz, K. Granat, D. Nowak and K. Haimann, Effect of hardening methods of moulding sands with water glass on structure of bonding bridges, Archives of foundry engineering, 10, 123-128, 2010.
[34] 冯胜山, 水玻璃砂铸造应注意的几个问题, 铸造设备研究, 6, 42-46, 2008.
[36] M. Stachowicz, K. Granat and D. Nowak, Application of microwaves for innovative hardening of environment-friendly water-glass moulding sands used in manufacture of cast-steel castings, Archives of Civil and Mechanical Engineering, 11, 209-219, 2011.
[37] J.-N. Wang, Z.-T. Fan, H.-F. Wang, X.-P. Dong and N.-Y. Huang, An improved sodium silicate binder modified by ultra-fine powder materials, Research & Development, 2007.
[38] P. Coatanlem, R. Jauberthie and F. Rendell, Lightweight wood chipping concrete durability, Construction and building Materials, 20, 776-781, 2006.
[39] 洪嘉璟, 鐵基軟磁複合材料磷化處理及表面改質對其電磁性質影響之研究, 成功大學資源工程學系學位論文, 2014.
[40] 何冠廷, 鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究, 成功大學資源工程學系學位論文, 2016.
[41] B. Burton, S. Kang, S. Rhee and S. George, SiO2 atomic layer deposition using tris (dimethylamino) silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy, The Journal of Physical Chemistry C, 113, 8249-8257, 2009.
[42] B. Ulgut and S. Suzer, XPS studies of SiO2/Si system under external bias, The Journal of Physical Chemistry B, 107, 2939-2943, 2003.
[43] R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi and S. Santucci, XPS studies on SiOx thin films, Applied Surface Science, 70, 222-225, 1993.
[44] H.-I. Hsiang, L.-F. Fan and K.-T. Ho, Relationship Between the Microstructure and Magnetic Properties of Fe–Si–Cr Powder Cores, IEEE Transactions on Magnetics, 54, 1-7, 2018.
[45] H.-I. Hsiang, L.-F. Fan and J.-J. Hung, Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites, Journal of Magnetism and Magnetic Materials, 447, 1-8, 2018.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw