進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201912125900
論文名稱(中文) 自相似正則化全色態銳化方法對地球特殊景觀”之”參數設置研究
論文名稱(英文) Parameter Setting for Distinctive Earth Landscapes in Self-Similarity Regularization Pansharpening (SimiRegPS) Method
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 簡振城
研究生(英文) Raden Bagus Fauzan Irshadibima
學號 N66067208
學位類別 碩士
語文別 英文
論文頁數 44頁
口試委員 指導教授-洪瀞
口試委員-熊彬成
口試委員-王國隆
口試委員-顏君行
中文關鍵字 none 
英文關鍵字 Satellite imagery  Pansharpening  Image processing 
學科別分類
中文摘要 none
英文摘要 It is difficult to obtain an accurate satellite imagery of the target landscapes. In recent years, a technique called Pansharpening method has demonstrated its potential to help obtain enhancing the quality of spatial and spectral satellite imagery. The SimiRegPS is one of the finest candidates to perform pansharpening method. Notice that the parameter selections, namely the regularizer parameter (λ) and penalty parameter (µ), are critical to acquire an ideal result for such a method, this thesis aims to determine the parameter setting for SimiRegPS method considering various target landscapes.
In developing the parameter setting, this thesis will use satellite image with four different characteristic landscapes (urban, mountain, crop and coastal land type), to find its specific parameter setting. The parameter setting is defined using trial and error methods, with a specific range of wider parameter range and ultimately discovering a narrower and defined range for each respective land types. The performance of the defined parameter setting is assessed using a quality index (visually and quantitatively) and compared with other pansharpening methods. The result shows that the defined parameter setting can lead to better results when compared to its default setting, and generally gives advantageous results against other pansharpening methods. It can be concluded that the parameter setting defined in this thesis can be applied to enhance the performance of the SimiRegPS method, and it is also revealed that for each land type, the ideal parameter range value would be different.
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
1. INTRODUCTION 1
1.1 Research Background. 1
2. LITERATURE REVIEW 4
2.1 Satellite imagery 4
2.2 Pansharpening method 6
2.2.1 Component Substitution 6
2.2.2 Multiresolution Analysis 8
2.3 Self-Similarity Regularization Pansharpening Method 11
2.4 Quality Index 14
2.4.1 Spectral Angle Mapper 15
2.4.2 Root Mean Square Error 16
2.4.3 Peak Signal to Noise Ratio 17
3. RESEARCH DESIGN AND METHODOLOGY 18
3.1 Satellite Imagery Dataset 18
3.2 SimiRegPS Parameter Selection 20
3.3 Parameter Setting Quality Index 22
4. RESEARCH RESULTS 25
4.1 Parameter Setting Selection 26
4.2 Quality Index 28
4.2.1 Urban land type 29
4.2.2 Mountain land type 31
4.2.3 Crop land type 33
4.2.4 Coastal land type 35
5. CONCLUSION 38
REFERENCES 40
參考文獻 (2019, June 14). Retrieved from Apollomapping: https://apollomapping.com/
(2019, June 15). Retrieved from Digitalglobe: https://www.digitalglobe.com/
Afonso, M. V., Bioucas-Dias, J. M., & Figueiredo, M. A. (2011). An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Processing, Vol. 20, no. 3, 681-695.
Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A., & Selva, M. (2006). MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery. Photogrammetric Engineering & Remote Sensing Vol. 72, No. 5, 591-596.
Aiazzi, B., Alparone, L., Baronti, S., Garzello, A., & Selva, M. (2012). 25 years of pansharpening: a critical review and new developments. In C. H. Chen, Signal and Image Processing for Remote Sensing, 2nd Edition (pp. 533-548). Florida: CRC Press, Taylor and Francis Books.
Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving Component Substitution Pansharpening through multivariate regression of MS+Pan data. IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, 3230-3239.
Aiazzi, B., Baronti, S., Alparone, L., Garzelli, A., & Selva, M. (2012). Advantages of Laplacian pyramids over ‘’à trous’’ wavelet transforms for pansharpening of multispectral images. Image and Signal Processing for Remote Sensing XVIII, 853704. Edinburgh: SPIE.
Alparone, L., Baronti, S., Aiazzi, B., & Garzelli, A. (2016). Spatial Methods for Multispectral Pansharpening: Multiresolution Analysis Demystified. IEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO.5, 2563-2576.
Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. (2007). Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest. IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no.10, 3012-3021.
Baronti, S., Casini, A., Lotti, F., & Alparone, L. (1994). Context-driven differential encoding of an enhanced image pyramid. Signal Processing Image Communication, vol. 6, 463-469.
Burt, P., & Adelson, E. (1983). The Laplacian Pyramid as compact image code. IEEE Transactions on Communications, vol. 31, no. 4, 534-540.
C., R., Gonzalez, & Woods., R. E. (1992). Digital Image Processing. New York: Addison-Wesley.
Chi, C.-Y., Li, W.-C., & Lin, C.-H. (2017). Convex Optimization for Signal Processing and Communcations: From Fundamentals to Applications. Florida: CRC Press.
Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. 2007 IEEE International Conference on Image Processing (pp. 313-316). San Antonio: IEEE.
Daniel, T., Nasir, M., & Bouman, C. A. (2005). Multispectral Image Coding. In A. Bovik, In Communications, Networking and Multimedia, Handbook of Image and Video Processing (2nd edition) (pp. 747-760). Texas: Elsevier.
Dou, W., Chen, Y., X.Li, & Sui, D. Z. (2007). A general framework for component substitution image fusion: An implementation using the fast image fusion method. Computational Geoscience, vol. 33 no.2, 219-228.
Earthexplorer. (2019, June 15). Retrieved from USGS: https://earthexplorer.usgs.gov/
Garzelli, A., Aiazzi, B., Alparone, L., Lolli, S., & Vivone, G. (2018). Multispectral pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover. Remote Sensing.
Garzelli, A., Capobianco, L., Alparone, L., Aiazzi, B., Baronti, S., & Selva, M. (2010). Hyperspectral pansharpening based on modulation of pixel spectra. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (pp. 1-4). Reykjavik: IEEE.
Kahraman, S., & Ertürk, A. (2018). Review and Performance Comparison of Pansharpening Algorithms for RASAT images. Electrica, vol. 18, no.1, 109-120.
Laben, C. A., & Brower, B. V. (2000). United States Patent No. 6,011,875.
Lin, C.-H., & Bioucas-Dias, J. M. (2019). An explicit and scene-adapted definition of self-similarity prior with application to Sentinel-2 super-resolution. IEEE Transactions on Geoscience and Remote Sensing.
Lin, C.-H., Ma, F., Chi, C.-Y., & Hsieh, C.-H. (2018). A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 3, 1652-1667.
Nocedal, J., & Wright, S. J. (2006). Numerical Optimization Second Edition. Springer.
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., & Arbiol, R. (1999). Multiresolution-Based Image Fusion with Additive Wavelet Decomposition. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, 1204-1211.
P, J., & Hegde, A. V. (2015). A Review of Quality Metrics for Fused Image. INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 2015) (pp. 133-142). Elsevier.
Palsson, F. (2017). Image Fusion in remote sensing and quality evaluation of fused images. Reykjavik: University of Iceland.
Richards, J. A., & Jia, X. (1996). Remote Sensing Digital Image Analysis - An Introduction. In Springer, Third Edition. Berlin: Springer.
S, R., Addamani, S., Venkat, & S, R. (2014). Spectral Angle Mapper Algorithm for Remote Sensing Image Classification. International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 4, 201-205.
Spacenet Challenge. (2019, June 15). Retrieved from Spacenet: https://spacenetchallenge.github.io/AOI_Lists/AOI_HomePage.html
Thomas, C., Ranchin, T., Wald, L., & Chanussot, J. (2008). Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics. IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, 1301-1312.
Tomas, R., Romero, R., Mulas, J., Marturia, J., Mallorqui, J., Lopes-Sanchez, J., . . . Gutierrez, F. (2014). Radar Interferometry Techniques For The Study of Ground Subsidence Phenomena: a Review of Practical Issues Through Cases in Spain. Environmental Earth Sciences, 163-181.
USGS. (2019, July 7). Retrieved from USGS website: http://edcimswww.cr.usgs.gov/pub/imswelcome/
Vivone, G., Alparone, L., Chanussot, J., Mura, M. D., Garzelli, A., Licciardi, L. G., . . . Wald, L. (2015). A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no.5, 2565-2586.
Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens., vol. 63, no. 6, 691-699.
Wang, C.-H., Lin, C.-H., Bioucas-Dias, J., Zheng, W.-C., & Tseng, K.-H. (2019). Panchromatic sharpening of multispectral satellite imagery via an explicitly defined convex self-similarity regularization. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Japan: IEEE.
Zhang, Y. (2004). Understanding Image Fusion. Photogramm. Eng. Remote Sens. , 657-661.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw