進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201900033300
論文名稱(中文) 以SBAS方法測量前兆地表運動之InSAR參數研究
論文名稱(英文) Parametric Study of InSAR SBAS Method for Measuring Precursory Ground Movement
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 艾聖彥
研究生(英文) Bagas Aryaseta
學號 N66067216
學位類別 碩士
語文別 英文
論文頁數 37頁
口試委員 指導教授-洪瀞
口試委員-龔仲偉
口試委員-鄭鈺潔
中文關鍵字 none 
英文關鍵字 displacement time series  ground movement  Sentinel-1  InSAR  SBAS 
學科別分類
中文摘要 none
英文摘要 In this research, a parametric study was conducted to help understand the precursory ground movements of landslides. In the parametric study, a total of 4 main parameters are evaluated, namely Unwrapping Coherence Threshold (CC), Ground Control Points (GCP), Goldstein AlphaMax and Goldstein AlphaMin. The two studied cases are Xinmo and Crescent Lake Landslides. The results reveal that parameter selection can be very influential to the final results obtained. The best set of parameters for Xinmo Landslide are: Coherence Threshold (CC) 0.05, Ground Control Point (GPC) 19, Goldstein AlphaMax 2.5 and Goldstein AlphaMin 0.3 with RMS and MAE error, 6.77 and 4.99, respectively. The best set of parameters for Crescent Lake Landslide are: Coherence Threshold (CC) 0.15, Ground Control Point (GPC) 39, Goldstein AlphaMax 3.5 and Goldstein AlphaMin 0.3 with RMS and MAE error, 22.81 and 18.22, respectively.
論文目次 ABSTRACT I
ACKNOWLEDGMENTS II
TABLE OF CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VI
CHAPTER ONE INTRODUCTION 1
1.1 Research Background. 1
CHAPTER TWO LITERATURE REVIEW 4
2.1 Interferometric Synthetic Aperture Radar (InSAR) 4
2.2 InSAR SBAS Method for Measuring Ground Movement 6
2.3 Parameters Investigated in This Study 8
2.2.1 Baseline 8
2.2.2 Unwrapping Coherence Threshold (CC) 9
2.2.3 Ground Control Point (GCP) 11
2.2.4 Goldstein Filter 12
CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 14
3.1 SBAS Method Workflow 14
CHAPTER FOUR RESEARCH RESULTS 17
4.1 Case Study: Xinmo Landslide 17
4.2 Case Study: Crescent Lake Landslide 25
CHAPTER FIVE CONCLUSION AND SUGGESTIONS 32
REFERENCES 34
參考文獻 An. (2017, June 26). Torrential rain wreaks havoc in south China. Retrieved from XinhuaNet: http://www.xinhuanet.com//english/2017-06/26/c_136393929.htm
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2375-2383.
Chaussard, E., Wdowinski, S., Cabral-Cano, E., & Amelung, F. (2014). Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 94-106.
CUHK-ISEIS. (2017, July 2). CUHK ISEIS Analyzes "6.24" Landslide in Maoxian, Sichuan Province with Satellite Images. Retrieved from Communications and Public Relations Office: https://www.cpr.cuhk.edu.hk/en/press_detail.php?id=2544
Dai, K., Li, Z., Tomas, R., Guoxiang, L., Yu, B., Wang, X., . . . Stockamp, J. (2016). Monitoring activity at the Daduangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sensing of Environment, 501-513.
Darvishi, M., Schlögel, R., Kofler, C., Cuozzo, G., Rutzinger, M., Zieher, T., . . . Bruzzone, L. (2018). Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy). Remote Sensing.
Dong, J., Zhang, L., Li, M., Yu, Y., Liao, M., Gong, J., & Luo, H. (2017). Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Recent Landslides.
ESA. (2014, July 24). RADAR and SAR Glossary. Retrieved from ESA earthnet online: https://earth.esa.int/handbooks/asar/CNTR5-2.html
ESA. (2019). What is Sentinel-1? Retrieved from ESA: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-1
Goldstein, R. M., & Werner, C. L. (1998). Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 4035-4038.
Hanssen. (2005). Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation, 253-260.
Höser, T. (2018). Analyzing the Capabilities and Limitations of InSAR using Sentinel-1 data for Landslide Detection and Monitoring. Bonn: University of Bonn.
Hu, X., Lu, Z., Pierson, T. C., Kramer, R., & George, D. L. (2018). Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Low-Gradient Translational Landslide. Geophysical Research Letters, 1-10.
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., . . . Casagli, N. (2017). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Recent Landslides.
Love, M. (2014, October 25). Interferometric Synthetic-Aperture Radar (InSAR) Basics. Retrieved from Slide Serve: https://www.slideserve.com/micah-love/interferometric-synthetic-aperture-radar-insar-basics
Lubis, A. M., Sato, T., Tomiyama, N., Isezaki, N., & Yamanokuchi, T. (2011). Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. Journal of Asian Earth Sciences, 1079-1088.
NASA. (2018, February 17). InSAR map of deformation due to M7.2 Oaxaca Earthquake. Retrieved from NASA Earth Science Disasters Program: https://disasters.nasa.gov/oaxaca-mexico-earthquake-2018/insar-map-deformation-due-m72-oaxaca-earthquake
NERC-COMET. (2017, June 29). Sentinel-1 satellites reveal pre-event movements and source areas of the Maoxian landslides, China. Retrieved from Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics: https://comet.nerc.ac.uk/sentinel-1-satellites-reveal-pre-event-movements-source-areas-maoxian-landslides-china/
Pepe, A., & Lanari, R. (2006). On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2374-2383.
Phongha, P. (2018). Measuring Bangkok Metropolitan Land Subsidence in 2017 Using Sentinel-1 SAR Data. Taoyuan: National Central University.
Qu, F., Zhang, Q., Lu, Z., Zhao, C., Yang, C., & Zhang, J. (2014). Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 366-376.
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodríguez, E., & Goldstein, R. M. (2000). Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 333-376.
sarmap. (2013, July). SBAS Tutorial. Retrieved from sarmap: www.sarmap.ch/tutorials/sbas_tutorial_V_2_0.pdf
sarmap. (2015, February). GCP Manual. Retrieved from sarmap: www.sarmap.ch/tutorials/GCP_Manual.pdf
SARscape. (2014, April). SARscape Help Manual. Retrieved from Harris Geospatial: https://www.harrisgeospatial.com/docs/pdf/sarscape_5.1_help.pdf
Shamsiri, R., Nahavandchi, H., Motagh, M., & Haghighi, M. H. (2016). Multi-sensor InSAR analysis of surface displacement over coastal urban city of Trondheim. Procedia Computer Science, 1141-1146.
Sun, Q., Zhang, L., Ding, X. L., Hu, J., Li, Z. W., & Zhu, J. J. (2015). Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of Environment, 45-47.
Zebker, H. A., & Villasenor, J. (1992). Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 950-959.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw