進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201816244800
論文名稱(中文) 以電腦斷層影像進行腰椎微結構分析
論文名稱(英文) Analysis of the lumbar microstructure with computed tomography
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 王靖耀
研究生(英文) Jing-Yao Wang
學號 P86054137
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-方佑華
口試委員-王士豪
口試委員-孫永年
中文關鍵字 腰椎微結構  椎體終板  血管通道  黃韌帶  韌帶厚度  腰椎姿勢 
英文關鍵字 lumbar structure  vertebral endplate  vascular canal network  ligamentum flavum  thickness  lumbar postures 
學科別分類
中文摘要 下背痛是一種常見的流行疾病,通常可歸因於隨著年齡的增長,會使得與腰椎相鄰的結構與組織產生退化,如椎間盤退化所引發的椎間盤突出,或者黃韌帶肥厚而導致椎管狹隘等,不過我們對於這些結構退化的致病機轉尚未完全瞭解。椎間盤細胞的營養供應源自於椎體終板(endplate)的血管通道網絡(vascular canal network),因此這些通道的形態變化,會影響椎間盤的營養供應,而進一步造成椎間盤的退化;黃韌帶則會因為年齡的增長而導致厚度增加,不同的姿勢也可能使黃韌帶肥厚,進而壓迫到脊柱內神經引起疼痛。透過分析椎體終板與黃韌帶之三維微結構,能提供更詳細的資訊,也許能進而瞭解退化的病理原因。本研究分為兩個部分:一、量化椎體終板的血管通道網絡結構,分析在不同終板與腰椎之位置的結構資訊;二、在不同脊椎姿勢下,量化與分析黃韌帶厚度之變化。方法:一、對於椎體終板,以micro-CT (2μm)影像對終板進行造影,再利用Otsu以及Level set method等方法,將血管通道從micro-CT影像中分割出來,再以通道直徑、長度、深度以及方向進行結構分析;二、透過黃韌帶周圍的解剖結構特性,並結合影像處理方法,從CT影像中分割出黃韌帶,並進行厚度的量測與統計分析。結果:對於Dice similarity coefficient,終板通道以及黃韌帶分割的準確性分別為87.5%以及90%,終板通道在縱向的數量遠多於橫向,隨著不同終板或腰椎位置其管深度分布以及直徑也有所不同;黃韌帶在脊椎的伸展之厚度明顯大於脊椎彎曲時,而在側向彎曲時,彎曲側之黃韌帶厚度相較於另一側也有顯著的增厚。結論:本研究以影像處理方法,對椎體終板之通道與黃韌帶結構進行分割及分析,透過分析三維的微結構,對於瞭解組織或結構的變化是有幫助的,在未來能協助我們更為了解腰椎退化之病理機轉。
英文摘要 Low back pain is a common muscular-skeletal disorder, and the cause could be attributed to many factors. Among them, intervertebral disc degeneration induces the disc herniation and hypertrophy of ligamentum flavum that leads to spinal stenosis. Although there are many reports for the lumbar degeneration, the pathogenesis remains an enigma. The nutrients for the cells within the intervertebral disc are supplied by the vascular canal network of the vertebral endplate, so the morphological changes of endplate canals would affect the pathway of metabolites and may eventually lead to the disc degeneration. On the other hand, ligamentum flavum becomes thicker with age that would result in the symptoms of spinal stenosis. The analysis of three-dimension microstructure can provide the detailed information which may help us better understand the cause of degeneration. Our study is divided into two parts. First, the endplate canals were quantified and analyzed for the different positions of the endplate at various lumbar levels. Second, the thickness of ligamentum flavum would be measured under different postures. Method: First, for the endplate canals, we used micro-CT images with a spatial resolution of 2μm. The endplate canals were segmented by Otsu and level set methods, and then the canal network is analyzed for canal diameter, length, depth, and orientation. Second, ligamentum flavum were segmented automatically from CT images, and then the thickness would be measured and analyzed with statistical tests. Results: With the dice similarity coefficient, the segmentation accuracy of endplate canals and ligamentum flavum can reach 87.5% and 90%, respectively. The number of endplate canals in the longitudinal direction is significantly higher than the transverse one. The depth and diameter of the canals vary with the different positions of vertebral endplate or lumbar levels. The thickness of the ligamentum flavum under extension is significantly higher than that under flexion. In addition, lateral bending makes ligamentum flavum of the bending side significantly thicker. Conclusion: This study used image processing techniques to segment and analyze the vascular network of the vertebral endplate and the ligamentum flavum thickness under different postures. With the analysis of three-dimensional microstructure, it is helpful to understand the changes of tissue structures in the lumbar spine. Quantification of lumbar microstructure may become a useful tool to evaluate the degeneration of the lumbar region and help physicians wake better therapeutic plans to reduce the low back pain.
論文目次 Chapter 1 Overview 1
Chapter 2 Introduction 2
2. 1 Vertebral endplate 2
2.1.1 Anatomy of endplate 2
2.1.2 Role of endplate in intervertebral disc degeneration 4
2.1.3 Measurement of morphological structure of vascular canal network of vertebral endplate 5
2.1.4 Motivation and specific aims 6
2. 2 Ligamentum flavum 8
2.2.1 Anatomy of ligamentum flavum 8
2.2.2 Role of ligamentum flavum in stenosis 9
2.2.3 Measurement of ligamentum flavum thickness on MRI and CT 10
2.2.4 Different lumbar postures with stenosis 12
2.2.5 Motivation and specific aims 13
Chapter 3 Material and Methods 14
3.1 Vertebral endplate 14
3.1.1 Endplate samples acquisition 14
3.1.2 Segmentation 14
3.1.3 Validation for endplate canals. 22
3.1.4 Measurement 23
3.1.5 Statistical analysis 24
3.2 Ligamentum flavum 26
3.2.1 Ligamentum flavum acquisition 26
3.2.2 Segmentation 27
3.2.3 Validation for LF segmentation 35
3.2.4 Measurement 35
3.2.5 Statistical analysis 37
Chapter 4 Results and Discussion 38
4.1 Endplate canals analysis and segmentation 38
4.1.1 Segmentation 38
4.1.2 Results of the endplate microstructural analysis 39
4.1.2.1 Comparison with the longitudinal and transverse canals 39
4.1.2.2 Statistical analysis in different positions of the endplate 40
4.1.2.3 Statistical analysis in different lumbar levels of the endplate 43
4.1.2.4 Comparison with different lumbar levels and endplate positions 45
4.1.2.5 Multi-depth endplate by Ward’s clustering. 46
4.1.2.6 Summary 47
4.1.2.7 Limitation and future work 48
4.2 Ligamentum flavum with different postures analysis and segmentation 49
4.2.1 Segmentation 49
4.2.2 Results of thickness analysis of ligamentum flavum 53
4.2.2.1 The analysis for LF thickness with neutral posture 53
4.2.2.2 Comparison of LF thickness changes between flexion and extension postures. 54
4.2.2.3 Analysis of LF thickness changes with RLB postures. 56
4.2.2.4 Summary 59
4.2.2.5 Limitation and future work 59
Chapter 5 Conclusion 61
References 63

參考文獻 1. Z.-M.Zhong, D.-S.Z., W.-D.Xiao, S.-H.Wu, Q.Wu, Y.Zhang, F.-Q.Liu, andJ.-T.Chen, Hyperthrophy of Ligamentum Flavum in Lumbar Spine Stenosis Associated with the Increased Expression of Connective Tissue Growth Factor. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2011. 29(10): p. 1592-7.
2. Benneker, L.M., et al., 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila Pa 1976), 2005. 30(2): p. 167-73.
3. Kolte, V.S., S. Khambatta, and M.V. Ambiye, Thickness of the ligamentum flavum: correlation with age and its asymmetry-an magnetic resonance imaging study. Asian Spine J, 2015. 9(2): p. 245-53.
4. Zeng, C., et al., The Evaluation and Observation of "Hidden" Hypertrophy of Cervical Ligamentum Flavum, Cervical Canal, and Related Factors Using Kinetic Magnetic Resonance Imaging. Global Spine Journal, 2016. 6(2): p. 155-163.
5. Rodriguez, A.G., et al., Morphology of the human vertebral endplate. J Orthop Res, 2012. 30(2): p. 280-7.
6. Moore, R.J., The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J, 2006. 15 Suppl 3: p. S333-7.
7. Pooni, J.S., et al., Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg Radiol Anat, 1986. 8(3): p. 175-82.
8. Broberg, K.B., On the mechanical behaviour of intervertebral discs. Spine (Phila Pa 1976), 1983. 8(2): p. 151-65.
9. Holm, S., et al., Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res, 1981. 8(2): p. 101-19.
10. Lotz, J.C., A.J. Fields, and E.C. Liebenberg, The role of the vertebral end plate in low back pain. Global Spine J, 2013. 3(3): p. 153-64.
11. Yong-Can Huang, J.P.G. Urban, and K.D.K. Luk, Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol., 2014. 10(9): p. 561-6.
12. Roberts, S., J. Menage, and J.P. Urban, Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976), 1989. 14(2): p. 166-74.
13. Zehra, U., et al., Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J, 2017. 17(5): p. 727-737.
14. Xiao, L., et al., Analysis of Correlation Between Vertebral Endplate Change and Lumbar Disc Degeneration. Medical Science Monitor, 2017. 23: p. 4932-4938.
15. Soukane, D.M., A. Shirazi-Adl, and J.P. Urban, Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech, 2007. 40(12): p. 2645-54.
16. Freemont, A.J., et al., Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol, 2002. 196(4): p. 374-9.
17. Pfirrmann, C.W., et al., Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 2001. 26(17): p. 1873-8.
18. Bernick, S. and R. Cailliet, Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976), 1982. 7(2): p. 97-102.
19. Jackson, A.R., C.Y. Huang, and W.Y. Gu, Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin, 2011. 14(2): p. 195-204.
20. Peng, B.G., et al., The relationship between cartilage end-plate calcification and disc degeneration: an experimental study. Chinese Medical Journal, 2001. 114(3): p. 308-312.
21. Videman, T., M. Nurminen, and J.D. Troup, 1990 Volvo Award in clinical sciences. Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation, and physical loading. Spine (Phila Pa 1976), 1990. 15(8): p. 728-40.
22. Sambrook, P.N., A.J. MacGregor, and T.D. Spector, Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum, 1999. 42(2): p. 366-72.
23. Kauppila, L.I., et al., Lumbar Disc Degeneration and Atherosclerosis of the Abdominal-Aorta. Spine, 1994. 19(8): p. 923-929.
24. Rutges, J.P., et al., Micro-CT quantification of subchondral endplate changes in intervertebral disc degeneration. Osteoarthritis Cartilage, 2011. 19(1): p. 89-95.
25. Gruber, H.E., et al., Vertebral endplate architecture and vascularization: application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine (Phila Pa 1976), 2005. 30(23): p. 2593-600.
26. Yamaguchi, T., et al., Microstructural analysis of three-dimensional canal network in the rabbit lumbar vertebral endplate. J Orthop Res, 2015. 33(2): p. 270-6.
27. Burghardt, A.J., T.M. Link, and S. Majumdar, High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res, 2011. 469(8): p. 2179-93.
28. Lee, S.Y., et al., Lumbar Stenosis: A Recent Update by Review of Literature. Asian Spine J, 2015. 9(5): p. 818-28.
29. Reina, M.A., et al., Human Lumbar Ligamentum Flavum Anatomy for Epidural Anesthesia: Reviewing a 3D MR-Based Interactive Model and Postmortem Samples. Anesth Analg, 2016. 122(3): p. 903-7.
30. Viejo-Fuertes, D., et al., Morphologic and histologic study of the ligamentum flavum in the thoraco-lumbar region. Surg Radiol Anat, 1998. 20(3): p. 171-6.
31. Olszewski, A.D., M.J. Yaszemski, and A.A. White, The anatomy of the human lumbar ligamentum flavum - New observations and their surgical importance. Spine, 1996. 21(20): p. 2307-2312.
32. Abdel-Meguid, E.M., An anatomical study of the human lumbar ligamentum flavum. Neurosciences (Riyadh), 2008. 13(1): p. 11-6.
33. Lirk, P., et al., The incidence of lumbar ligamentum flavum midline gaps. Anesth Analg, 2004. 98(4): p. 1178-80, table of contents.
34. Munns, J.J., et al., Ligamentum flavum hypertrophy in asymptomatic and chronic low back pain subjects. PLoS One, 2015. 10(5): p. e0128321.
35. J1., A., et al., Ligamentum flavum thickness in normal and stenotic lumbar spines. Spine, 2010.
36. Arnoldi, C.C., et al., Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop Relat Res, 1976(115): p. 4-5.
37. Liu, L.M., Y.M. Song, and Q. Gong, [Treatment of lumbar stenosis and root pain resulting from simple hypertrophy of lumbar ligamentum flavum]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2003. 17(1): p. 50-1.
38. Zhong, Z.M., et al., Hypertrophy of ligamentum flavum in lumbar spine stenosis associated with the increased expression of connective tissue growth factor. J Orthop Res, 2011. 29(10): p. 1592-7.
39. S., H., Pathophysiology of disc degeneration. Acta Orthop Scand Suppl, 1993. 251(13-5).
40. Okuda, T., et al., Morphological changes of the ligamentum flavum as a cause of nerve root compression. European Spine Journal, 2005. 14(3): p. 277-286.
41. CORBETT, J., Minimally invasive treatments for lumbar spinal stenosis: an interview with James Corbett, President & Chief Executive Officer of Vertos Medical. 2013.
42. Silberstein M, Tress BM, and H. O., A comparison between M.R.I. and C.T. in acute spinal trauma. Australas Radiol, 1992. 36(3): p. 192-7.
43. T.L.Schulte., et al., Comparison of metric analysis of spinal structures, exemplarily of the ligamentum flavum, obtained with CT and MRI. European Journal of Radiology, 2004. 52(3): p. 224-228.
44. Schönström N, L.S., Willén J, et al. , Dynamic changes in the dimension of the lumbar spinal canal: an experimental study in vitro. . J Orthop Res 1989.
45. L, P., Functional pathology of lumbar spinal stenosis. Clin Biomech (Bristol, Avon), 1992. 7(3-17).
46. Osher S, S.J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 1988. 79(1): p. 12-49.
47. J.A.Sethian, Advancing Interfaces: Level Set and Fast Marching Methods. Cambridge, U.K.: Cambridge Univ., 1999.
48. Li C, X.C., Gui C, et al, Level set evolution without re-initialization: a new variational formulation
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. 1: p. 430-436.
49. Li C, K.C., Gore JC, Ding Z. Implicit active contours driven by local binary fitting energy. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2007.
50. Malladi, R., J.A. Sethian, and B.C. Vemuri, Shape Modeling with Front Propagation - a Level Set Approach. Ieee Transactions on Pattern Analysis and Machine Intelligence, 1995. 17(2): p. 158-175.
51. Caselles, V., et al., A Geometric Model for Active Contours in Image-Processing. Numerische Mathematik, 1993. 66(1): p. 1-31.
52. Juying Huang, F.J., Hao Wu, anad Haiyun, An imporved level set method for vertebra CT image segmentation. BioMedical Engineering Online, 2013. 12(48).
53. Li, C., et al., Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process, 2010. 19(12): p. 3243-54.
54. Hildebrand, T. and P. Ruegsegger, A new method for the model-independent assessment of thickness in three-dimensional images. Journal of Microscopy-Oxford, 1997. 185: p. 67-75.
55. Doube, M., et al., BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 2010. 47(6): p. 1076-9.
56. Cao, Y., et al., 3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study. Sci Rep, 2017. 7: p. 43094.
57. Hangai, M., et al., Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J, 2008. 8(5): p. 732-40.
58. Kanayama, M., et al., Cross-sectional magnetic resonance imaging study of lumbar disc degeneration in 200 healthy individuals. J Neurosurg Spine, 2009. 11(4): p. 501-7.
59. R. GLEN SPURLING, M.D.F.H.M., M.D.; JAMES B. ROGERS, M.D., Hypertrophy of the ligamentum flavum as a cause of low back pain. JAMA Internal Medicine, 1937. 109(12): p. 928-933.
60. Safak, A.A., et al., The thickness of the ligamentum flavum in relation to age and gender. Clin Anat, 2010. 23(1): p. 79-83.
61. Yoshiiwa, T., et al., Analysis of the Relationship between Ligamentum Flavum Thickening and Lumbar Segmental Instability, Disc Degeneration, and Facet Joint Osteoarthritis in Lumbar Spinal Stenosis. Asian Spine Journal, 2016. 10(6): p. 1132-1140.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw