進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201813163800
論文名稱(中文) 純相及摻氟之二氧化釩的合成和特性研究
論文名稱(英文) Synthesis and characterization of pure and F-doped VO2
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 羅勻志
研究生(英文) Yun-Chih Lo
學號 N56031522
學位類別 碩士
語文別 中文
論文頁數 85頁
口試委員 口試委員-黃啟祥
口試委員-劉浩志
口試委員-許文東
指導教授-齊孝定
中文關鍵字 二氧化釩  熱電材料  水熱法 
英文關鍵字 thermoelectric  Seebeck coefficient  vanadium dioxide 
學科別分類
中文摘要 本實驗研究的材料為二氧化釩(Vanadium dioxide, VO2),是一種具有相變性質的過渡金屬氧化物。1959年F. J. Morin發現二氧化釩具有相變特性,VO2在金屬-半導體(metal-semiconductor transition, MST)的轉變過程中,晶格結構會發生由金紅石相(rutile)到單斜晶相(monoclinic)的轉變,此時物理性質上也會隨之發生突變,如電阻會有2~5個數量級突變,同時伴隨著磁化率、光學折射率和反射率的改變,並且因為其相變溫度(約68℃)非常接近室溫,使其成為了受歡迎的功能材料研究對象。
不過VO2在熱傳導的部分卻沒有因為從半導體轉變為金屬後有所提升,於今年(2017)柏克萊團隊發現VO2中的自由載子在傳輸電荷的過程中卻不會傳輸熱能,形成一種導電卻不導熱的特殊現象,此種同時具有導電好卻導熱差的特性,非常具有發展成為熱電材料的潛力。而VO2還有另一項特點,即是釩對氧非常敏感,釩在大氣中可以+2、+3、+4、+5或混合價方式存在,所以合成不易,故本研究的重點為嘗試利用水熱法合成純相及摻氟之二氧化釩粉體,探討水熱條件、燒結條件、摻雜比例、還原劑的選擇和比例等對VO2粉體的影響。再對材料進行各項分析,包含XRD、SEM、DSC、密度、席貝克係數、導電率、霍爾量測等性質分析。
實驗結果顯示,以草酸最適合作為水熱反應之還原劑,在260℃下持溫12小時,可製備出顆粒大小均勻的VO2粉體,且VO2-xFx (x=0、0.025、0.05、0.1、0.15)的XRD圖中均呈現純相,代表F摻雜量未超出固溶極限。隨著F摻雜量增加,導電率和席貝克係數隨之提升,由DSC顯示相轉變溫度則隨之下降。功率因子(PF值)在摻雜量F=15%的30℃時有最大值,其值為8.797μW/mK^2。
英文摘要 VO2, which is a strong electron correlation material has been widely studied. It undergoes a semiconductor-metal transition near room temperature (~ 340 K). When the temperature is lower than the phase transition temperature, VO2 is in the monoclinic phase with the P21/c space group. When the temperature is higher than the phase transition temperature, the VO2 is in the tetragonal rutile phase with the P42/mnm space group. Meanwhile, the phase transition is accompanied by a significant change in both electrical and optical properties. These features cause it to be widely used in electronics, optical devices, sensors, thermal windows, and other fields. However, there has been very little research on its thermoelectric properties. This year, another group of researchers discovered why the electronic thermal conductivity is anomalously low in metallic VO2. This behavior makes it promising in terms of developing thermoelectric materials. In this work, we attempt to synthesize both pure and F-doped VO2. The properties of the VO2 powders were characterized using XRD, SEM, EDS, DSC, and Hall effect measurements. However, vanadium is very sensitive to oxygen, which makes synthesis more challenging. We chose to prepare VO2 powders using a hydrothermal synthetic method under the following conditions: V2O5 was used as the raw material; oxalic acid was used as the reductant; NH4F was used as the F dopant; hydrothermal reaction was performed for 12 hours at 260℃. The results revealed that the maximum PF was achieved with the 15% F-doped VO2, which reached 8.797μW/mK^2 at room temperature because of its better electrical conductivity and Seebeck coefficient.
論文目次 摘要 I
Abstract II
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
第1章 緒論 1
1-1 前言 1
1-2 研究動機 4
第2章 理論基礎與文獻回顧 5
2-1 熱電效應 5
2-1-1 席貝克效應(Seebeck effect) 5
2-1-2 帕爾帖效應(Peltier effect) 7
2-1-3 湯木森效應(Thomson effect) 9
2-2 熱電材料參數與相關理論 11
2-2-1 熱電優值ZT 11
2-2-2 席貝克係數 13
2-2-3 電導率 14
2-2-4 熱傳導率 16
2-2-5 熱電性質傳輸理論 17
2-2-6 ZT性質優化 19
2-3 VO2晶體結構 20
2-4 VO2相變機制 28
2-5 VO2光學性質 29
2-6 VO2電學性質 30
2-7 VO2合成方法 31
2-8 VO2的摻雜 33
2-9 水熱法 34
2-10 VO2之文獻回顧 36
第3章 實驗方法與步驟 38
3-1 實驗流程 38
3-2 材料性質分析方法 40
3-2-1 X光繞射儀(X-ray diffraction) 40
3-2-2 TOPAS全譜分析 41
3-2-3 高解析掃描電子顯微鏡(SEM) 43
3-2-4 電導率量測 44
3-2-5 席貝克係數量測 45
3-2-6 示差掃瞄熱分析(DSC) 45
3-2-7 霍爾量測 46
第4章 實驗結果與討論 47
4-1 還原劑及製程步驟選擇 47
4-2 不同草酸比例對VO2的影響 51
4-3 變溫XRD 53
4-4 利用XRD分析晶粒大小及晶格常數 55
4-5 SEM表面形貌、密度及EDS元素成分分析 60
4-6 電性量測 64
4-7 席貝克係數與霍爾量測 71
4-8 DSC量測 76
4-9 功率因子 79
第5章 結論 81
參考文獻 83

參考文獻 [1] G. J. Tan and L. D. Zhao, "Rationally designing high-performance bulk thermoelectric materials," Chemical Reviews, vol. 116, no. 19, pp. 12123-12149, 2016.
[2] 劉倡宜, "碲化鉍合金薄膜熱電元件的開發," 臺灣大學機械工程學研究所學位論文, pp. 1-62, 2015.
[3] D. M. Rowe, "Thermoelectrics handbook : Macro to Nano," 2005.
[4] H. T. Katzke, P, "Theory of morphotropic transformations in vanadium oxides," Physical Review B, vol. 68, no. 2, 2003.
[5] D. M. Rowe, "CRC Handbook of thermoelectrics," 1995.
[6] X. B. Zhao, " Synthesis of nanocomposites with improved thermoelectric properties," Electronic Materials, vol. 38, no. 7, pp. 1017-1024, 2013.
[7] A. M. Makarevich and I. Sadykov, "Chemical synthesis of high quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties," Materials Chemistry C, vol. 3, no. 35, pp. 9197-9205, 2016.
[8] Z. Y. Li and D. M. Cao, "Review on synthetic technology of vanadium dioxide powder," Rare Metal MaterialS and Engineering, vol. 35, pp. 316-320, 2006.
[9] F. J. Morin, "Oxides which show a metal-to-insulator transition at the neel temperature," Physical Review Letters, vol. 3, no. 1, pp. 34-36, 1959.
[10] W. C. Hong, S, "Metal-Insulator Phase Transition in Quasi-One-Dimensional VO2 Structures," Nanomaterials, 2015.
[11] M. L. John, "A refinement of the structure of VO2," Acta Chem Scand, vol. 24, pp. 420-426, 1970.
[12] Y. Wu and L. Fan, "Depressed transition temperature of WxV1−xO2:Mechanistic insights from the x-ray absorption fine structure (XAFS) spectroscopy," Chem. Phys., vol. 16, pp. 17705-17714, 2014.
[13] 黄康, "TixV1-xO2薄膜的制备及其能带结构分析," 东华大学, pp. 1-58, 2017.
[14] Y. Oka and T. Yao, "Powder X-Ray crystal-structure of VO2(A)," Solid State Chemistry, vol. 86, no. 1, pp. 116-124, 1990.
[15] 王成迁, "二氧化钒纳米线的制备及M相研究," 2012.
[16] J. B. Goodenough, "The two components of Crystallographic Transitionin VO2," Chemistry Of Materials, vol. 3, no. 4, pp. 490-500, 1971.
[17] 楊孟璇, "低溫濺鍍非晶相ZnO:Al薄膜之研究," 國立中山大學物理系研究所, pp. 1-91, 2009.
[18] X. Q. Chen and J. Li, "Thermoelectrical and optical characteristics research on novel nanostructured VO2 thin film," OPTIK, vol. 124, no. 15, pp. 2041, 2013.
[19] H. T. Zhang and L. Zhang, "Wafer-scale growth of VO2 thin films using a combinatorial approach," Nature Communications, vol. 6, 2015.
[20] Y. Bando and M. Kyoto, "Mass-spectrometric study on chemical-transport of VO2," Crystal Growth, vol. 45, no. 1, pp. 20-24, 1978.
[21] S. W. Lu and L. Hou, "Preparation and optical properties of phase-change VO2 thin films," Materials Science, vol. 28, no. 8, pp. 2169-2177, 1993.
[22] C. Tang and P. Georgopoulos, "Local atomic and electronic arrangements in WxV1-xO2," Phys Rev B, vol. 31, no. 2, pp. 1000-1011, 1985.
[23] F. Theobald and R. Cabala, "Structural elucidation of VO2(B)," Solid State Chemistry, vol. 17, no. 4, pp. 431-438, 1975.
[24] Y. Oka and T. Yao, "Powder X-Ray crystal-structure of VO2(A)," Solid State Chem, vol. 86, no. 1, pp. 116-124, 1990.
[25] J. W. Pierce and J. B. Goodenough, "Structure of orthorhombic V0.95Cr0.05O2," Physical review b, vol. 5, no. 10, pp. 4104, 1972.
[26] K. J. Bayer, "Studium über die gewinnung reiner tonerde," Chem. Zeitung, vol. 12, no. 14, pp. 736, 1890.
[27] R. I. Walton, "Subcritical solvothermal synthesis of condensed inorganic materials," Chemical society reviews, vol. 31, no. 4, pp. 230-238, 2002.
[28] P. F. Bongers, "Anisotropy of the electrical conductivity of VO2 single crystals," Solid State Communications, vol. 3, pp. 275-277, 1965.
[29] C. N. Berglund and H. J. Guggenheim, "Electronic properties of VO2 near the semiconductor-metal transition," Physical Review, vol. 185, no. 3, pp. 1022-1033, 1969.
[30] J. K. Chen, "Investigation of the thermal conductivities across metal-insulator transition in polycrystalline VO2," Chinese Science Bulletin, vol. 57, no. 26, pp. 3393-3396, 2012.
[31] S. Lee and K. Hippalgaonkar, "Anomalously low electronic thermal conductivity in metallic vanadium dioxide," Science, vol. 355, no. 6323, pp. 371, 2017.
[32] C. Li., "Applications of scanning electron microscopy in earth sciences," Science china earth sciences, vol. 58, pp. 1768-1778, 2015.
[33] H. Y. Xu and Y. H. Huang, "Effects of annealing ambient on oxygen vacancies and phase transition temperature of VO2 thin films," RSC Advances, vol. 6, no. 83, pp. 79383-79388, 2016.
[34] W. Bruckner, "The range of homogeneity of VO2, and the influence of the composition on the physical properties," Phys Stat, vol. 29, no. 63, 1975.
[35] W. Burkhardt, "W- and F-doped VO2 films studied by photoelectron spectrometry," Thin Solid Films, vol. 345, no. 2, pp. 229-235, 1999.
[36] A. Riapanitra, "Supercritical temperature synthesis of fluorine-doped VO2(M) nanoparticle with improved thermochromic property," Nanotechnology, vol. 29, no. 24, 2018.
[37] L. C. Dai, "F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability," Physical Chemistry Chemical Physics, vol. 15, no. 28, pp. 11723-11729, 2013.
[38] B. U. Rajeswaran, "Effect of W addition on the electrical switching of VO2 thin films," AIP Advances, vol. 6, no. 3, 2016.
[39] S. Kumar and F. Maury, "Electrical switching in semiconductor-metal self-assembled VO2 disordered metamaterial coatings," Scientific Reports, vol. 6, 2016.
[40] N. F. Quackenbush and H. Paik, "Stability of the M2 phase of vanadium dioxide induced by coherent epitaxial strain," Physical Review B vol. 94, no. 8, 2016.
[41] K. T. Kishimoto, M. , "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by RF sputtering," Journal of Applied Physics, vol. 92, no. 9, pp. 5331-5339, 2002.
[42] C. H. Kou, "Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering," Materials Transactions,, vol. 52, no. 4, pp. 795-801, 2011.
[43] T. D. Manning and I. P. Parkin, "Intelligent window coatings: Atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide," Chemistry Of Materials, vol. 16, no. 4, pp. 744-749, 2004.
[44] E. E. Chain, "Optical-properties of vanadium dioxide and vanadium pentoxide thin-films," Applied Optics, vol. 30, no. 19, pp. 2782-2787, 1991.
[45] E. B. Shadrin and A. V. Il'inskii, "On the nature of metal-semiconductor phase transition in vanadium dioxide," Physics Of The Solid State, vol. 42, no. 6, pp. 1126-1133, 2000.
[46] C. Z. Wu and F. Feng, "Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect," The American Chemical Society, vol. 133, no. 35, pp. 13798-13801, 2011.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw