進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201811530600
論文名稱(中文) 三碘化甲胺鉛微米線特性研究及其光感測器之應用
論文名稱(英文) Studies of CH3NH3PbI3 microwires and its application on photodetectors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 2
出版年 107
研究生(中文) 吳冠德
研究生(英文) Kuan-Te Wu
學號 L76064014
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
口試委員-阮志正
中文關鍵字 CH3NH3PbI3微米線  記憶效應  光導體元件  薄膜電晶體 
英文關鍵字 CH3NH3PbI3 microwires  memristors  photoconductors  organic thin-film transistors 
學科別分類
中文摘要 本研究利用流體引導之反溶劑蒸氣輔助結晶法(FGAVC)法製作出結晶性更好、更具方向性的三碘化甲胺鉛(CH3NH3PbI3)微米線,研究微米線的材料與光電特性,並且應用於光感測元件上。
運用原子力顯微鏡、掃描式電子顯微鏡、導電式原子力顯微鏡、掃描式凱爾文探針顯微鏡、X光繞射儀分析以及光致螢光光譜等儀器分析CH3NH3PbI3微米線,探討微米線的材料與光電特性。由材料分析可得知,利用FGAVC法能使CH3NH3PbI3結晶自組裝成微米線且具有方向性,而CH3NH3I:PbI2莫爾比例1.5:1為微米線的最佳製程參數。由光電特性分析,單根CH3NH3PbI3微米線在照光下的電流電壓曲線呈現電阻式記憶體的電特性。
進一步將CH3NH3PbI3微米線應用在光感測器上,我們製作了兩種元件結構,分別是光導體元件與電晶體,光導體元件中我們量測不同波長雷射光照射下的電性,得知藍光照射時,元件有最大光響應,而紅、綠光照射時,元件光響應較小;使用CH3NH3PbI3微米線搭配十三烷基駢苯衍生物(PTCDI-C13)當主動層,製作成小電壓驅動有機電晶體,研究其光感應特性,結果顯示導入CH3NH3PbI3微米線,可使有機電晶體具有分辨不同色光的能力。
本研究解析CH3NH3PbI3微米線的材料及光電特性,成功利用微米線製作出光偵測器,其中藍光照射下元件光響應度可達15 mA/W。
英文摘要 In this study, we investigated the structural and electrical properties of CH3NH3PbI3 microwires prepared by fluid-guided anti-solvent vapor-assisted crystallization; their application in photosensors was also evaluated. The CH3NH3PbI3 microwires were characterized by atomic force microscopy (AFM), scanning electron microscopy, and conductive AFM. CH3NH3PbI3 self-assembled into microwires with directional crystallization, and a single microwire showed memristor-like behavior under light illumination. The electrical properties of CH3NH3PbI3 microwire-based photoconductors were then investigated under laser illumination with various wavelengths. Under blue light illumination, the photoconductors exhibited a photo-responsivity of 15 mA/W; under red and green light illumination, however, a photo-responsivity of only 2 mA/W was obtained. Finally, we studied the photoresponse properties of CH3NH3PbI3 microwire/N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) composite-based thin-film transistors (TFTs). A top layer of PTCDI-C13 was thermally deposited onto the CH3NH3PbI3 microwires to form the active layer of TFTs, and results showed that the composite-based TFTs could distinguish different colors of light.
論文目次 中文摘要 I
Extended Abstract III
誌謝 IX
目錄 X
表目錄 XIV
圖目錄 XV
第一章 簡介 1
1.1 CH3NH3PbI3簡介 1
1.2 研究動機 2
第二章 光偵測器概論 4
2.1 鈣鈦礦光偵測器的基本結構與特性 4
2.2 光導體元件的基本結構與特性 6
2.3 光導體元件的基本公式及特性 7
2.3.1 響應率(Responsivity, R) 7
2.3.2 雜訊等效功率(noise equivalent power, NEP) 7
2.3.3 探測率(Detectivity, D) 8
2.3.4 載子遷移率(mobility, μ) 8
2.4 有機薄膜電晶體的基本公式及特性 8
2.4.1臨界電壓(threshold voltage, VT) 9
2.4.2 次臨界擺幅(subthreshold swing, S.S.) 9
2.4.3 電流開關比(on/off ratio) 9
第三章 實驗方法與分析儀器介紹 12
3.1 實驗材料 12
3.1.1 鈣鈦礦材料 12
3.1.2 N型有機半導體 12
3.1.3 有機修飾層材料 13
3.1.4 有機溶劑 13
3.2 CH3NH3PbI3微米線光導體元件製程 13
3.2.1 清洗基板 13
3.2.2 CH3NH3PbI3溶液配置 14
3.2.3 CH3NH3PbI3微米線製作 14
3.2.4 蒸鍍電極 14
3.3 有機薄膜電晶體製程 14
3.3.1 蒸鍍閘極 15
3.3.2 高介電係數金屬氧化層 15
3.3.3 旋轉塗佈有機高分子修飾層 15
3.3.4 CH3NH3PbI3線狀結晶製作 15
3.3.5 蒸鍍有機半導體層和電極 15
3.4 分析儀器 16
3.4.1 半導體參數分析儀 16
3.4.2 光感測系統 16
3.4.3 原子力顯微鏡(Atomic Force Microscope,AFM) 17
3.4.4 導電式原子力顯微鏡(Conductive Atomic Force Microscope,C-AFM) 17
3.4.5 掃描式凱爾文探針顯微鏡(Scanning Kelvin Probe Microscopy,SKPM) 18
3.4.6 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 18
3.4.7 光致螢光光譜(Photoluminescence Spectroscopy,PL) 18
3.4.8 低掠角X光繞射儀(X ray Diffraction Spectroscopy,XRD) 18
第四章 實驗結果與討論 24
4.1 前言 24
4.2 CH3NH3PbI3結晶特性分析 24
4.2.1 AFM分析 25
4.2.2 SEM分析 25
4.2.3 C-AFM分析 26
4.2.4 SKPM分析 27
4.2.5 XRD分析 29
4.2.6 PL/TrPL分析 30
4.3 電性分析 32
4.3.1 光導體元件照光下電特性分析 32
4.3.2 SCLC分析 35
4.3.3 電晶體分析 35
第五章 結論 66
5.1 實驗結論 66
5.2 未來工作 69
參考文獻 70


表目錄
表4-1 CH3NH3PbI3 薄膜、微米線PL分析 37
表4-2 CH3NH3PbI3 薄膜、微米線TrPL分析 38
表4-3 將CH3NH3PbI3光導體元件運用線性擬合,找出不同色光,照度10 mW/cm2下,CH3NH3PbI3總結晶寬度對 (a)響應率 (mA/W)、(b) Detectivity (cm Hz1/2 W-1)的分析。 39
表4-4 不同色光照射下,CH3NH3PbI3微米線混摻PTCDI複合薄膜電晶體電特性分析 40


圖目錄
圖2-1 鈣鈦礦光偵測器示意圖: (a)光二極體、(b)垂直式光導體元件、(c)水平式光導體元件、(d)光電晶體 10
圖2-2 空間電荷限制電流示意圖 11

圖3-1實驗材料結構: (a)CH3NH3I、(b)PbI2、(c)CH3NH3PbI3、(d) PTCDI-C13、(f)PVP、(f)PMF 19
圖3-2 CH3NH3PbI3微米線製作流程圖 20
圖3-3 CH3NH3PbI3微米線光導體元件: (a)元件架構示意圖;(b)實際元件圖。 21
圖3-4 CH3NH3PbI3光電晶體結構圖 22
圖3-5 光感測系統示意圖 23

圖4-1 利用AFM量測在N2環境下成長的CH3NH3PbI3結晶:(a)表面形貌;(b)立體圖。 41
圖4-2 利用AFM量測在DCM環境下成長的CH3NH3PbI3微米線 :(a)表面形貌;(b)立體圖。 42
圖4-3 利用SEM量測CH3NH3PbI3微米線:(a) CH3NH3PbI3微米線側視圖;(b) 側視放大圖;(c) CH3NH3PbI3微米線橫截面圖。 43
圖4-4 (a)CH3NH3PbI3微米線AFM形貌圖 (b) 利用C-AFM量測CH3NH3PbI3微米線電流圖 44
圖4-5利用C-AFM量測 CH3NH3PbI3微米線的單點電流電壓曲線:(a)在未照光環境下量測;(b)照光環境下量測。 45
圖4-6 分析C-AFM量測CH3NH3PbI3微米線的電流電壓曲線。 46
圖4-7 CH3NH3PbI3微米線SKPM量測示意圖:(a)量測位置在玻璃上的微米線;(b)量測位置在微米線上的銀。 47
圖4-8 利用SKPM量測CH3NH3PbI3微米線:(a)玻璃上CH3NH3PbI3微米線的表面電位;(b)AFM形貌;(c) CH3NH3PbI3微米線上鍍銀之表面電位;(d)AFM形貌。 48
圖4-9 利用XRD分析CH3NH3PbI3:(a) CH3NH3PbI3薄膜XRD;(b) CH3NH3I:PbI2不同比例微米線XRD 49
圖4-10 利用XRD分析不同加熱時間CH3NH3PbI3微米線的XRD 50
圖4-11 (a) CH3NH3PbI3薄膜PL分析、(b) CH3NH3PbI3微米線PL分析 51
圖4-12 (a) CH3NH3PbI3薄膜TrPL分析、(b) CH3NH3PbI3微米線TrPL分析、(c)兩TrPL曲線疊合分析 52
圖4-13 CH3NH3PbI3微米線總結晶寬度30 µm,不同照度下光導體元件電性分析:(a)紅光;(b)綠光;(c)藍光。 53
圖4-14 CH3NH3PbI3微米線總結晶寬度130 µm,不同照度下光導體元件電性分析:(a)紅光;(b)綠光;(c)藍光。 54
圖4-15 CH3NH3PbI3微米線總結晶寬度200 µm,不同照度下光導體元件電性分析:(a)紅光;(b)綠光;(c)藍光。 55
圖4-16 CH3NH3PbI3微米線總結晶寬度300 µm,不同照度下光導體元件電性分析:(a)紅光;(b)綠光;(c)藍光。 56
圖4-17在紅光照射下,CH3NH3PbI3微米線光導體元件在+2 V的電流對不同紅光照度作圖,其總結晶寬度分別為 (a) 30 µm、(b) 130 µm、(c) 200 µm、(d) 300 µm。 57
圖4-18 在綠光照射下,CH3NH3PbI3微米線光導體元件在+2 V的電流對不同綠光照度作圖,其總結晶寬度分別為 (a) 30 µm、(b) 130 µm、(c) 200 µm、(d) 300 µm。 58
圖4-19 在藍光照射下,CH3NH3PbI3微米線光導體元件在+2 V的電流對不同藍光照度作圖,其總結晶寬度分別為 (a) 30 µm、(b) 130 µm、(c) 200 µm、(d) 300 µm。 59
圖4-20 運用線性擬合,找出在10mW/cm2的雷射光照下,不同CH3NH3PbI3微米線光導體元件結晶寬度的 (a)光電流、(b)光響應圖。 60
圖4-21 CH3NH3PbI3微米線光導體元件重複操作對電性影響:(a)操作第1次電流電壓曲線;(b)第2次;(c)第3次;(d)隔一天操作;(e) +2 V電流整理。 61
圖4-22 CH3NH3PbI3薄膜光導體元件 (a)結構圖、(b)與微米線的響應率比較。 62
圖4-23 CH3NH3PbI3微米線光導體元件 mobility計算 63
圖4-24不同雷射光照下,CH3NH3PbI3微米線混摻PTCDI複合薄膜電晶體轉換曲線,照光參數為:(a)未照光、(b)紅光(2.25 mW/cm2)、(b)綠光(2.4 mW/cm2)、(c)藍光(2.27 mW/cm2)、(e)不同照光參數下轉換曲線疊合圖。 64
圖4-25 CH3NH3PbI3微米線覆蓋PTCDI之TrPL 65

參考文獻 [1] Kojima, A. et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” , J. Am. Chem. Soc., 131, 6560, 2009.

[2] M. Saliba et al., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science, 354, 206, 2016.

[3] Sum, T. C. et al., “Advancements in perovskite solar cells:
photophysics behind the photovoltaics”, energy environ. Sci., 7, 2518, 2014.

[4] W. Y. Chen et al., “Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cell”, J. Mater. Chem. A, 3, 19353, 2015.

[5] P. Fan et al., “High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition”, Sci. Rep., 6, 29910, 2016.

[6] W. Nie et al., “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.

[7] H. Cho et al., “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science, 350, 1222, 2015.

[8] L. Zhang et al., “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes”, Nat. Commun., 8, 15640, 2017.

[9] M. R. Leyden et al., “Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition”, J. Phys. Chem. Lett., 8, 3193, 2017.

[10] L. Dou et al., “Solution-processed hybrid perovskite photodetectors with high detectivity”, Nat. Commun, 5, 5404, 2014.

[11] H. Wang et al., “Perovskite-based photodetectors: materials and devices”, Chem. Soc. Rev., 46, 5204, 2017.

[12] E. Horvath et al., “Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization”, Nano Lett.,14, 6761, 2014.

[13] W. Deng et al., “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability”, Adv. Mater., 28, 2201, 2016.

[14] J. Xing et al., “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers”, Nano Lett., 15, 4571, 2015.

[15] H. Deng et al., “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices”, Nanoscale, 7, 4163, 2015.

[16] E. Horvath et al., “Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization”, Nano Lett., 14, 6761, 2014.

[17] P. Zhu et al., “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices”, Nano Lett., 16, 871, 2016.

[18] W. Deng et al., “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement”, Nano Lett., 17, 2482, 2017.

[19] X. Xu et al., “Saturated vapor-assisted growth of single-crystalline organic−inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability”, ACS Appl. Mater. Interfaces, 10, 10287, 2018.

[20] R. J. Mclntyre, “Measurement”, 3, 146, 1985.

[21] H. W. Chen et al., “A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber”, J. Phys. Chem. Lett., 6, 1773, 2015.

[22] Z. Ku et al., “Full printable processed pesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode”, Sci. Rep., 3, 3132, 2013.

[23] Kai Yan et al., “High-performance perovskite memristor based on methyl ammonium lead halides”, J. Mater. Chem. C, 4, 1375, 2016.

[24] C. Gu et al., “Flexible hybrid organic−inorganic perovskite memory”, ACS Nano, 10, 5413, 2016.

[25] G. Lin et al., “An organic–inorganic hybrid perovskite logic gate for better computing”, J. Mater. Chem. C, 3, 10793, 2015.

[26] Z. Xiao et al., “Giant switchable photovoltaic effect in
organometal trihalide perovskite devices”, Nature Mater., 14, 193, 2015.

[27] X. Xu et al., “Saturated vapor-assisted growth of single-crystalline organic−inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability”, ACS Appl. Mater. Interfaces, 10, 10287, 2018.

[28] C.Zhang et al., “Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents”, Nano-Micro Letters, 8, 347, 2016.

[29] Md. Mijanur Rahman et al., “Effect of the filtration of PbI2 solution for zinc oxide nanowire based perovskite solar cells”, Jpn. J. Appl. Phys., 55, 01AE09, 2016.

[30] D. Bi et al., “Efficient luminescent solar cells based on tailored mixed-cation perovskites”, Sci. Adv., 2, e1501170, 2016.

[31] Y. Zhang et al., “Enhanced optoelectronic quality of perovskite films with excess CH3NH3I for high-efficiency solar cells in ambient air”, Nanotechnology, 28, 205401, 2017.

[32] S. D. Stranks et al, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science, 342, 341, 2013.

[33] X. Jia et al, “Facile synthesis of organiceinorganic hybrid perovskite CH3NH3PbI3 microcrystals”, J. Alloys Compd., 725, 270, 2017.

[34] E. J. Juarez-Perez et al, “Photoinduced giant dielectric constant in lead halide perovskite solar cells”, Science, 347, 519, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw