進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201811470900
論文名稱(中文) 微生物揮發性氣味於圓葉菸草中活化先天性免疫訊息傳遞途徑
論文名稱(英文) Activation of Innate Immune Signaling Pathways by Microbial Volatiles in Nicotiana benthamiana
校院名稱 成功大學
系所名稱(中) 熱帶植物科學研究所
系所名稱(英) Institute of Tropical Plant Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 賴佩瑄
研究生(英文) Pei-Hsuan Lai
學號 Z36044018
學位類別 碩士
語文別 中文
論文頁數 91頁
口試委員 指導教授-黃浩仁
共同指導教授-李瑞花
口試委員-蔣鎮宇
口試委員-張文粲
口試委員-張文綺
中文關鍵字 細菌揮發性有機化合物  絲裂原活化蛋白激酶途徑  過氧化物  先天性免疫  病毒誘導基因靜默 
英文關鍵字 Bacterial volatile organic compounds (bVOCs)  Mitogen-activated protein kinase (MAPK) cascades  Reactive oxygen species (ROS)  Innnate immunity  Virus-induced gene silence (VIGS) 
學科別分類
中文摘要 植物作為一種固著生物,其受到外界的環境刺激遠多於動物。因此它們因應這些多樣的環境逆境,如受傷、極端溫度、高鹽度、乾旱以及病原菌入侵,進而演化出許多相應的防禦機制。為了對抗病原菌的感染,植物利用模式辨識受體 (PRR) 來感知具保守性的微生物分子表徵,並且展開一系列的防禦反應,引發模式誘導免疫反應 (PTI)。先前的研究顯示過氧化物 (ROS) 的累積參與在植物的先天性免疫中,同時調節上游或下游的絲裂原活化蛋白激酶 (MAPK) 訊息傳導途徑。在本研究中,我們想探討由細菌揮發性化合物 (bVOCs) 所誘導的 MAPK 訊息傳遞途徑之植物先天性免疫反應。從實驗結果發現 Enterobacter aerogenes 以及 E. aerogenes VOCs 組成中的主要化合物 - C2 化合物皆會抑制植物的生長、造成過氧化物 (ROS) 的累積、誘發氣孔關閉以及促進自噬體 (Autophagosomes) 的形成。此外,我們以病毒誘導基因靜默技術 (VIGS) 製作 NbMKK1 基因靜默植株,藉以探究 NbMKK1 於 bVOCs 之下所扮演的功能與角色,進而發現 NbMKK1 參與在調控氣孔關閉的防禦反應以及自噬作用 (Autophagy) 中。因此,細菌揮發性化合物 (bVOCs) 能夠促使植物產生防禦反應,並且誘發植株的先天性免疫訊息傳遞途徑,藉此抵抗細菌揮發性氣味的衝擊。
英文摘要 As sessile organisms, plants are subjected to more environmental stimuli than animals. They have evolved mechanisms to adapt various environmental stresses, such as wounding, extreme temperature, high salinity, drought, and pathogen invasion. To deal with the pathogen infection, plants use pattern-recognition receptors (PRRs) to perceive conserved microbial signatures and followed by a set of defense responses to initiate the pattern-triggered immunity (PTI). Previous studies indicated that the production of reactive oxygen species (ROS) was involved in plant innate immunity, and mediated by up- or downstream of mitogen-activated protein kinase (MAPK) signaling cascades. In this study, we explore the molecular mechanism in the MAPK–dependent innate immunity triggered by bacterial volatile organic compounds (bVOCs). We found that the VOCs emitted from Enterobacter aerogenes and C2 compound, the major volatile compound of the E. aerogenes VOCs, could inhibit plant growth, cause reactive oxygen species (ROS) accumulation, induce stomatal closure and promote the formation of autophagosomes. Furthermore, we used virus-induced gene silencing (VIGS) technique to suppress the gene expression level of NbMKK1 gene and treat with bVOCs. The results indicated that NbMKK1 involved in the defense response that mediated the stomatal closure and the autophagy pathway. Thus, we suggested that the bVOCs can trigger the MAPK-dependent innate immunity.
論文目次 摘要 I
Abstract II
英文延伸摘要 III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
縮寫對照表 XII
壹、前言 1
一、 Enterobacter aerogenes 簡介 1
二、 細菌揮發性化合物 (bVOCs) 對植物之影響 2
三、 植物先天性免疫 (Plant innate immunity) 3
四、絲裂原活化蛋白激酶訊息傳遞途徑 (MAPK signaling transduction pathway) 6
五、病毒誘導基因靜默 (Virus-induced gene silencing) 7
六、研究目的 9
貳、材料方法 11
一、 植株培養 (Plant material and cultivation) 11
(一) 無菌組織培養 (Plant tissue culture) 11
(二) 土壤種植 (Soil cultivation) 11
二、 菌種保存與培養 (Bacteria culture and stock preparation) 11
(一) 保菌 (Preparation bacteria stock) 12
(二) 細菌 Enterobacter aerogenes 培養 (Bacteria culture) 12
三、 E. aerogenes 揮發性氣味分析 (Bacterial VOCs analysis) 12
(一) 菌盤製備 (Bacteria plate preparation) 12
(二) 氣相層析質譜儀分析 (Gas Chromatography - Mass Spectrophoto-meter, GC-MS) 12
四、 次世代定序 (Next generation sequencing, NGS) 13
(一) RNA-Seq 定序方法 (RNA-seq sequencing method) 13
(二) 組裝與分析 (Assembly and analysis) 14
五、 植物與細菌揮發性氣味共培養 (Co-cultivation of plant and bacterial volatiles) 14
(一) E. aerogenes 揮發性物質與植物共培養 (Plant co-culture with E. aerogenes volatiles) 14
(二) 自 E. aerogenes 揮發性物質中分離出之揮發性化合物與植物共培養 (Plant co-culture with volatile organic compound emmited from E. aerogenes ) 14
六、 細菌揮發物對植物影響之生理生化分析 (Physiological and biochemical analysis) 15
(一) 葉片組織的過氧化物染色 (DAB staining) 15
(二) 葉下表皮氣孔觀察 (Stomata observation) 15
(三) 植物根部自噬體染色 (MDC staining) 16
七、 基因表現量分析 (RT-PCR and qRT-PCR analysis) 16
(一) RNA 萃取 (RNA extraction) 16
(二) RNA 濃度定量 (Nucleic acid quantitative analysis) 17
(三) 反轉錄作用 (Reverse Transcription, RT-PCR) 17
(四) 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 18
(五) 瓊脂膠體電泳 (Gel electrophoresis) 18
(六) 即時定量聚合酶鏈鎖反應 (Real-time Quantitative Polymerase Chain Reaction, RT-qPCR) 18
八、 病毒誘導基因靜默轉殖株製作 (Virus-induced gene silencing assays) 19
(一) 純化目標基因片段 (Gene fragment purification) 19
(二) 目標基因片段增殖 (Gene fragment proliferation) 19
(三) pTRV2 與目標基因片段之載體構築 (Vector construct) 21
(四) 電穿孔 (Electroporation) 22
(五) VIGS 農桿菌接種 (VIGS inoculation) 23
(六) VIGS 植株培養 (VIGS plant cultivation) 24
九、 蛋白質電泳與西方墨點法 (SDS-PAGE and Western blot) 24
(ㄧ) 蛋白質萃取與定量 (Protein extraction and quantification) 24
(二) 蛋白質電泳 (SDS-PAGE) 25
(三) 西方墨點法 (Western blot) 25
參、結果 27
一、 細菌揮發性化合物 (bVOCs) 對野生型菸草之影響與生理分析 27
(一) bVOCs 對不同生長階段的野生型菸草之外表型影響 27
(二) bVOCs 能誘導不同生長階段的野生型菸草體內累積過氧化物 28
(三) bVOCs 能影響不同生長階段的野生型菸草之葉下表皮氣孔開合程度 29
(四) bVOCs 能誘發自噬體 (autophagosome) 的形成 31
(五) bVOCs 能活化絲裂原活化蛋白激酶 (MAPK) 31
二、 分析受細菌揮發性化合物 (bVOCs) 所誘導之基因 33
(一) 以次世代定序 (NGS) 分析受細菌揮發性化合物處理之植物 33
(二) 篩選出受細菌揮發性化合物所誘導之基因,並用 RT-qPCR 及 RT-PCR 驗證其表現量 33
三、 細菌揮發性化合物 (bVOCs) 對病毒誘導基因靜默 (VIGS) 植株之影響與生理分析 36
(一) NbMKK1 靜默後之外表型與其內源性轉錄本之基因表現量 36
(二) NbMKK1 靜默植株對 bVOCs 具有耐受性 36
(三) NbMKK1 靜默植株於 bVOCs 處理後過氧化物之誘發 36
(四) NbMKK1 靜默植株於 bVOCs 處理後能影響葉下表皮之氣孔開合程度 37
(五) NbMKK1 靜默植株於 bVOCs 處理後能誘發部分自噬作用相關基因之表現量 38
肆、討論 39
一、 細菌揮發性化合物 (bVOCs) 能誘發菸草中的先天性免疫反應 39
(一) bVOCs 對煙草之影響與啟動第一道防線 39
(二) 細菌揮發性化合物 (bVOCs) 能誘發菸草中的自噬作用途徑 40
(三) bVOCs 能誘發 MAPK 訊息傳遞途徑 40
二、 NbMKK1 在細菌揮發性化合物 (bVOCs) 下的功能與角色 42
三、 結論 42
參考文獻 44
結果圖表 58
附錄 74
參考文獻 Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M., Katou, Y., … Yoshioka, H. (2015). WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana. The Plant Cell, 27(9), 2645–2663.
Adams-Phillips, L., Briggs, A. G., & Bent, A. F. (2010). Disruption of Poly(ADP-ribosyl)ation Mechanisms Alters Responses of Arabidopsis to Biotic Stress. Plant Physiology, 152(1), 267–280.
Adie, B. A. T., Perez-Perez, J., Perez-Perez, M. M., Godoy, M., Sanchez-Serrano, J.-J., Schmelz, E. A., & Solano, R. (2007). ABA Is an Essential Signal for Plant Resistance to Pathogens Affecting JA Biosynthesis and the Activation of Defenses in Arabidopsis. The Plant Cell Online, 19(5), 1665–1681.
Aguilar, E., del Toro, F. J., Canto, T., & Tenllado, F. (2017). Identification of MAPKs as signal transduction components required for the cell death response during compatible infection by the synergistic pair Potato virus X-Potato virus Y. Virology, 509(June), 178–184.
Ahmad, M., Zahir, Z. A., Asghar, H. N., & Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology, 62(3), 1321–1330.
Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73–90.
Alkahtani, M., Omer, S. A., El-Naggar, M. A., Abdel-Kareem, E. M., & Mahmoud, M. A. (2011). Pathogenesis-related Protein and Phytoalexin Induction against Cucumber Powdery Mildew by Elicitors.
Alström, S., & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition, 232–238.
Asadi, N., Karimi Alavijeh, M., & Zilouei, H. (2018). Biological hydrogen production by Enterobacter aerogenes: Structural analysis of treated rice straw and effect of substrate concentration. International Journal of Hydrogen Energy, 43(18), 8718–8728.
Asai, S., Ohta, K., & Yoshioka, H. (2008). MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana. The Plant Cell Online, 20(5), 1390–1406.
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., … Sheen, J. (2002). Map kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977–983.
Aslam, S. N., Newman, M. A., Erbs, G., Morrissey, K. L., Chinchilla, D., Boller, T., … Cooper, R. M. (2008). Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation. Current Biology, 18(14), 1078–1083.
Baker, C. J., Mock, N., Glazener, J., & Orlandi, E. (1993). Recognition responses in pathogen/non-host and race/cultivar interactions involving soybean (Glycine max) and Pseudomonas syringae pathovars. Physiological and Molecular Plant Pathology.
Balbi, V., & Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytologist, 177(2), 301–318.
Bari, R., & Jones, J. D. G. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488.
Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., & Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy, 2(1), 2–11.
Becker, A., & Lange, M. (2010). VIGS--genomics goes functional. Trends in Plant Science.
Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539.
Bouché, N., & Bouchez, D. (2001). Arabidopsis gene knockout: Phenotypes wanted. Current Opinion in Plant Biology, 4(2), 111–117.
Brigneti, G., Martín-Hernández, A. M., Jin, H., Chen, J., Baulcombe, D. C., Baker, B., & Jones, J. D. G. (2004). Virus-induced gene silencing in Solanum species. Plant Journal, 39(2), 264–272.
Bulletin, I., Bacteriolcgical, O. F., No, N., On, O., Genus, T. H. E., With, A., … Disease, C. (2018). INTERNATIONAL BULLETIN OF BACTERIOLCGICAL OBSERVATIONS ON THE GENUS AEROBPCTER, 8(2).
Burch-Smith, T. M., Anderson, J. C., Martin, G. B., & Dinesh-Kumar, S. P. (2004). Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal, 39(5), 734–746.
Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation, 33(2), 440–459.
Chen, L., Liao, B., Qi, H., Xie, L. J., Huang, L., Tan, W. J., … Xiao, S. (2015). Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy, 11(12), 2233–2246.
Chen, X.-Y., & Kim, J.-Y. (2009). Callose synthesis in higher plants. Plant Signaling & Behavior, 4(6), 489–492.
Chicas, A., & Macino, G. (2001). Characteristics of post-transcriptional gene silencing. EMBO Reports, 2(11), 992–996.
Chinchilla, D. (2006). The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. The Plant Cell Online, 18(2), 465–476.
Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803–814.
Choi, H.-J., Kang, S. W., Yang, C.-H., Rhee, S. G., & Ryu, S.-E. (1998). © 199 1 Nature Publishing Group http://www.nature.com/naturebiotechnology. Nature Structural Biology, (5), 400–406.
Converti, A., & Perego, P. (2002). Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Applied Microbiology and Biotechnology, 59(2–3), 303–309.
Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; Versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6(MAY), 1–10.
de Souza, R., Beneduzi, A., Ambrosini, A., da Costa, P. B., Meyer, J., Vargas, L. K., … Passaglia, L. M. P. (2013). The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and Soil, 366(1–2), 585–603.
Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., … Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6.
Ecker, J. R., & Davis, R. W. (1986). Inhibition of gene expression in plant cells by expression of antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 83(15), 5372–5376.
Fabiano, B., & Perego, P. (2002). Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy, 27(2), 149–156.
Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., … Friesen, T. L. (2010). A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences, 107(30), 13544–13549.
Farmer, J. J., Davis, B. R., Hickman-Brenner, F. W., McWhorter, A., Huntley-Carter, G. P., Asbury, M. A., … Fanning, G. R. (1985). Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. Journal of Clinical Microbiology, 21(1), 46–76.
Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18(3), 265–276.
Fujita, H., Aoki, S., & Kawaguchi, M. (2014). Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE, 9(4).
Gapper, C., & Dolan, L. (2006). Control of Plant Development by Reactive Oxygen Species 1. Plant Physiology, 141(June), 341–345.
Gayatri, G., Agurla, S., Kuchitsu, K., Anil, K., Podile, A. R., & Raghavendra, A. S. (2017). Stomatal Closure and Rise in ROS/NO of Arabidopsis Guard Cells by Tobacco Microbial Elicitors: Cryptogein and Harpin. Frontiers in Plant Science.
Gomi, K., Ogawa, D., Katou, S., Kamada, H., Nakajima, N., Saji, H., … Seo, S. (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant and Cell Physiology, 46(12), 1902–1914.
Gould, B., & Kramer, E. M. (2007). Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods, 3(1), 1–12.
Gudesblat, G. E., Torres, P. S., & Vojnov, A. A. (2008). Xanthomonas campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor. Plant Physiology, 149(2), 1017–1027.
Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance. Journal of Plant Growth Regulation, 32(2), 245–258.
Hamilton, A. J., & Baulcombe, D. C. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants, 286(5441), 950–952.
Han, S., Yu, B., Wang, Y., & Liu, Y. (2011). Role of plant autophagy in stress response. Protein and Cell, 2(10), 784–791.
Hann, D. R., & Rathjen, J. P. (2007). Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant Journal, 49(4), 607–618.
Hashimoto, M., Komatsu, K., Maejima, K., Okano, Y., Shiraishi, T., Ishikawa, K., … Namba, S. (2012). Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana. BMC Plant Biology, 12, 1–13.
Hayward, A. P., Tsao, J., & Dinesh-Kumar, S. P. (2009). Autophagy and plant innate immunity: Defense through degradation. Seminars in Cell and Developmental Biology.
He, S. Y. (1996). Elicitation of Plant Hypersensitive Response by Bacteria. Plant Physiology, 112(3), 865–869.
Henry, G., Thonart, P., & Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnologie, Agronomie, Société et …, 16(2), 12.
Hettenhausen, C., Baldwin, I. T., & Wu, J. (2012). Silencing MPK4 in Nicotiana attenuata Enhances Photosynthesis and Seed Production But Compromises Abscisic Acid-Induced Stomatal Closure and Guard Cell-Mediated Resistance to Pseudomonas syringae pv tomato DC3000. Plant Physiology, 158(2), 759–776.
Hofberger, J. A., Zhou, B., Tang, H., Jones, J. D. G., & Schranz, M. E. (2014). A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 15(1).
Hofius, D., Munch, D., Bressendorff, S., Mundy, J., & Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death and Differentiation, 18(8), 1257–1262.
Holzberg, S., Brosio, P., Gross, C., & Pogue, G. P. (2002). Barley strip mosaic virus-induced gene silencing in a monocot plant. Plant Journal, 30, 315–327.
Jammes, F., Yang, X., Xiao, S., & Kwak, J. M. (2011). Two arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signaling and Behavior, 6(11), 1875–1878.
Jin, H., Axtell, M. J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B., & Baker, B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev Cell, 3(2), 291–297.
Jones, D. A., & Takemoto, D. (2004). Plant innate immunity - Direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16(1), 48–62.
Jones, J. D. G., & Dangl2, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.
Kallenbach, M., Alagna, F., Baldwin, I. T., & Bonaventure, G. (2010). Nicotiana attenuata SIPK, WIPK, NPR1, and Fatty Acid-Amino Acid Conjugates Participate in the Induction of Jasmonic Acid Biosynthesis by Affecting Early Enzymatic Steps in the Pathway. Plant Physiology, 152(1), 96–106.
Kovtun, Y., Chiu, W.-L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences, 97(6), 2940–2945.
Krysan, P. J., Young, J. C., & Sussman, M. R. (1999). T-DNA as an Insertional Mutagen in Arabidopsis. The Plant Cell, 11(12), 2283–2290.
Kurihara, Y., & Watanabe, Y. (2004). From The Cover: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the National Academy of Sciences, 101(34), 12753–12758.
Lampard, G. R., Lukowitz, W., Ellis, B. E., & Bergmann, D. C. (2009). Novel and Expanded Roles for MAPK Signaling in Arabidopsis Stomatal Cell Fate Revealed by Cell Type-Specific Manipulations. The Plant Cell, 21(11), 3506–3517.
Le Bars, R., Marion, J., Le Borgne, R., Satiat-Jeunemaitre, B., & Bianchi, M. W. (2014). ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nature Communications, 5(May), 1–10.
Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., & Ryu, C. M. (2012). Induced Resistance by a Long-Chain Bacterial Volatile: Elicitation of Plant Systemic Defense by a C13 Volatile Produced by Paenibacillus polymyxa. PLoS ONE, 7(11), 1–11.
Lee, Y., Kim, Y. J., Kim, M.-H., & Kwak, J. M. (2016). MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 7(February), 1–8.
Lenz, H. D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., … Nürnberger, T. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal : For Cell and Molecular Biology, 66(5), 818–830.
Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 19(5), 641–650.
Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., … Zhou, J. M. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host and Microbe, 15(3), 329–338.
Liu, Y. L., Schiff, M., & Dinesh-Kumar, S. P. (2002). Virus-induced gene silencing in tomato. Plant Journal, 31(OCTOBER), 777–786.
Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., & Dinesh-Kumar, S. P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121(4), 567–577.
Loake, G., & Grant, M. (2007). Salicylic acid in plant defence-the players and protagonists. Current Opinion in Plant Biology, 10(5), 466–472.
Lu, H.-C., Chen, H.-H., Tsai, W.-C., Chen, W.-H., Su, H.-J., Chang, D. C.-N., & Yeh, H.-H. (2006). Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids. Plant Physiology, 143(2), 558–569.
Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., & Baulcombe, D. C. (2003). Virus-induced gene silencing in plants. Methods, 30(4), 296–303.
Luan, S. (2003). PROTEIN PHOSPHATASES IN PLANTS. Annu. Rev. Plant Biol.
Luderer, R., & Joosten, M. H. (2001). Avirulence proteins of plant pathogens : determinants. Molecular Plant Pathology, 2(6), 355–364.
Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose Deposition: A Multifaceted Plant Defense Response. Molecular Plant-Microbe Interactions, 24(2), 183–193.
MAPK-Group. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 7(7), 301–308.
Marjanac, G., Karimi, M., Naudts, M., Beeckman, T., Depicker, A., & De Buck, S. (2009). Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytologist.
Marten, H., Hyun, T., Gomi, K., Seo, S., Hedrich, R., & Roelfsema, M. R. G. (2008). Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. Plant Journal, 55(4), 698–708.
Mata, C. G. (2001). Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiology, 126(3), 1196–1204.
Matthew, L. (2004). RNAi for plant functional genomics. Comparative and Functional Genomics.
McHale, L., Tan, X., Koehl, P., & Michelmore, R. W. (2006). Plant NBS-LRR proteins: Adaptable guards. Genome Biology, 7(4).
Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126(5), 969–980.
Meng, X., & Zhang, S. (2013). MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51(1), 245–266.
Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D., & Ausubel, F. M. (2010). Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns. The Plant Cell, 22(3), 973–990.
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.
Montillet, J. L., & Hirt, H. (2013). New checkpoints in stomatal defense. Trends in Plant Science, 18(6), 295–297.
Montillet, J. L., Leonhardt, N., Mondy, S., Tranchimand, S., Rumeau, D., Boudsocq, M., … Hirt, H. (2013). An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biology, 11(3), 13–15.
Morel, J. B., & Dangl, J. L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation, 4(8), 671–683.
Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: An updated insight into defense mechanism. Journal of Biosciences, 38(2), 433–449.
Mylonis, I., Chachami, G., Samiotaki, M., Panayotou, G., Paraskeva, E., Kalousi, A., … Simos, G. (2006). Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1α. Journal of Biological Chemistry, 281(44), 33095–33106.
Nadeem, S. M., Ahmad, M., Naveed, M., Imran, M., Zahir, Z. A., & Crowley, D. E. (2016). Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of Microbiology, 198(4), 379–387.
Nakagami, H., Pitzschke, A., & Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 10(7), 339–346.
Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE, 9(1).
Newman, M.-A., Sundelin, T., Nielsen, J. T., & Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 4(May), 1–14.
Nomura, K., DebRoy, S., Lee, Y. H., Pumplin, N., Jones, J., & He, S. Y. (2006). A Bacterial Virulence Protein Suppresses Host Innate Immunity to Cause Plant Disease. Science, 313(July), 220–223.
Nürnberger, T., Brunner, F., Kemmerling, B., Piater, L., Nurnberger, T., Brunner, F., … Piater, L. (2004). Innate immunity in plants and animals: strinking similarities and obvious differences. Immunological Reviews, 198(1), 249–266.
Orlandlt, E. . W. ., HUTCHESON, S. . W. ., & BAKERt, C. J. (1992). Early physiological responses associated with race- specific recognition in soybean leaf tissue and cell suspensions treated with Pseudomonas syringae pv. glycinea. Physiological and Molecular Plant Pathology, 173–180.
Paul, D., & Park, K. S. (2013). Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors (Switzerland), 13(10), 13969–13977.
Perez-Perez, M. E., Lemaire, S. D., & Crespo, J. L. (2012). Reactive Oxygen Species and Autophagy in Plants and Algae. Plant Physiology, 160(1), 156–164.
Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., … Mundy, J. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103(7), 1111–1120.
Pitzschke, A., Djamei, A., Bitton, F., & Hirt, H. (2009). A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Molecular Plant, 2(1), 120–137.
Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12(4), 421–426.
Pozo, O. del, Pedley, K. F., & Martin, G. B. (2004). MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. The EMBO Journal, 23(15), 3072–3082.
Purkayastha, A., & Dasgupta, I. (2009). Virus-induced gene silencing: A versatile tool for discovery of gene functions in plants. Plant Physiology and Biochemistry, 47(11–12), 967–976.
Purkayastha, A., Mathur, S., Verma, V., Sharma, S., & Dasgupta, I. (2010). Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta, 232(6), 1531–1540.
Rasmussen, M. W., Roux, M., Petersen, M., & Mundy, J. (2012). MAP Kinase Cascades in Arabidopsis Innate Immunity. Frontiers in Plant Science.
Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2001). Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal : For Cell and Molecular Biology, 25(2), 237–245.
Ren, D., Yang, H., & Zhang, S. (2002). Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. Journal of Biological Chemistry, 277(1), 559–565.
Ryu, C.-M. (2004). Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. PLANT PHYSIOLOGY.
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences.
Sánchez-López, Á. M., Baslam, M., De Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., … Pozueta-Romero, J. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell and Environment.
Sanders, W. E., & Sanders, C. C. (1997). Enterobacter ssp: Pathogens Poised To Flourish at the turner of the Century. Clin. Microbiol. Rev, Vol 10(2), 220–241.
Saucedo-García, M., Gavilanes-Ruíz, M., & Arce-Cervantes, O. (2015). Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis. Frontiers in Plant Science, 6(February), 1–14.
Senthil-Kumar, M., & Mysore, K. S. (2014). Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols, 9(7), 1549–1562.
Sierla, M., Waszczak, C., Vahisalu, T., & Kangasjärvi, J. (2016). Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant Physiology, 171(3), 1569–1580.
Simon, U. K., Polanschütz, L. M., Koffler, B. E., & Zechmann, B. (2013). High Resolution Imaging of Temporal and Spatial Changes of Subcellular Ascorbate, Glutathione and H2O2 Distribution during Botrytis cinerea Infection in Arabidopsis. PLoS ONE, 8(6).
Song, G. C., & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803–9819.
Soyano, T., Nishihama, R., Morikiyo, K., Ishikawa, M., & Machida, Y. (2003). NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes and Development, 17(8), 1055–1067.
Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., & Hritcu, L. (2013). Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151, 22–29.
Stotz, H. U., Mitrousia, G. K., de Wit, P. J. G. M., & Fitt, B. D. L. (2014). Effector-triggered defence against apoplastic fungal pathogens. Trends in Plant Science, 19(8), 491–500.
Sun, J., Miller, J. B., Granqvist, E., Wiley-Kalil, A., Gobbato, E., Maillet, F., … Oldroyd, G. E. D. (2015). Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice. The Plant Cell, 27(3), 823–838.
Taj, G., Agarwal, P., Grant, M., & Kumar, A. (2010). MAPK machinery in plants. Plant Signaling & Behavior, 5(11), 1370–1378.
Takahashi, Y., Nasir, K. H. Bin, Ito, A., Kanzaki, H., Matsumura, H., Saitoh, H., … Terauchi, R. (2007). A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant Journal, 49(6), 1030–1040.
Takken, F. L., Albrecht, M., & Tameling, W. IL. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9(4), 383–390.
Tameling, W. I. L., & Takken, F. L. W. (2008). Resistance proteins: Scouts of the plant innate immune system. European Journal of Plant Pathology, 121(3), 243–255.
Teh, O. K., & Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65(5), 1297–1312.
Tena, G., Asai, T., Chiu, W.-L., & Sheen, J. (2001). Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology, 4(5), 392–400.
Tenhaken, R., Levine, A., Brisson, L. F., Dixon, R. A., & Lamb, C. (1995). Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A, 92(10), 4158–4163.
Thompson, A. R. (2005). Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways. Plant Physiology, 138(4), 2097–2110.
Tindall, B. J., Sutton, G., & Garrity, G. M. (2017). Enterobacter aerogenes hormaeche and Edwards 1960 (Approved lists 1980) and Klebsiella mobilis bascomb et al. 1971 (approved lists 1980) share the same nomenclatural type (ATCC 13048) on the approved lists and are homotypic synonyms, with consequences for. International Journal of Systematic and Evolutionary Microbiology, 67(2), 502–504.
Tissier, A. F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M. A., Murphy, G., & Jones, J. D. G. (1999). Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. The Plant Cell, 11(10), 1841–1852.
Treisman, R. (1996). Regulation of transcription by MAP kinase cascades. Current Opinion in Cell Biology, 8, 205–215.
Vance, R. E., Isberg, R. R., & Portnoy, D. A. (2009). Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host and Microbe, 6(1), 10–21.
Vespermann, A., Kai, M., & Piechulla, B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Applied and Environmental Microbiology.
Wang, X.-B., Wu, Q., Ito, T., Cillo, F., Li, W.-X., Chen, X., … Ding, S.-W. (2010). RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107(1), 484–489.
Wang, Y., Zhou, J., & Yu, J. (2017). The critical role of autophagy in plant responses to abiotic stresses, 4(1), 28–36.
Waterhouse, P. M., Graham, M. W., & Wang, M.-B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13959–13964.
Waterhouse, P. M., Wang, M., & Lough, T. (2001). Defence Against Viruses. Nature, 411, 834–842.
Weingart, H., & Völksch, B. (1997). Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Applied and Environmental Microbiology, 63(1), 156–161.
Weise, T., Kai, M., & Piechulla, B. (2013). Bacterial Ammonia Causes Significant Plant Growth Inhibition. PLoS ONE, 8(5), 1–7.
Xu, J., Yin, H., Li, Y., & Liu, X. (2010). Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum. Plant Physiology, 154(3), 1319–1334.
Yang, K. Y., Liu, Y., & Zhang, S. (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 741–746.
Yap, Y., Kodama, Y., Waller, F., Chung, K. M., Ueda, H., & Nakamura, K. (2005). Activation of a Novel Transcription Factor through Phosphorylation by WIPK , a Wound-Induced Mitogen-Activated Protein Kinase in Tobacco Plants 1, 139(September), 127–137.
Yeh, C. M., Chien, P. S., & Huang, H. J. (2007). Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. Journal of Experimental Botany, 58(3), 659–671.
Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., & Takasaki, Y. (1995). Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 80(6), 571–574.
Yu, H., & Kumar, P. P. (2003). Post-transcriptional gene silencing in plants by RNA. Plant Cell Reports, 22(3), 167–174.
Zeng, W., & He, S. Y. (2010). A Prominent Role of the Flagellin Receptor FLAGELLIN-SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153(3), 1188–1198.
Zhang, H., Fang, Q., Zhang, Z., Wang, Y., & Zheng, X. (2009). The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental Botany, 60(11), 3109–3122.
Zhang, J. S., Zhao, J., Zhang, S., & He, C. (2014). Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant Physalis. PLoS ONE, 9(1), 1–9.
Zhang, J., Yu, D., Zhang, Y., Liu, K., Xu, K., Zhang, F., … Li, C. (2017). Vacuum and Co-cultivation Agroinfiltration of (Germinated) Seeds Results in Tobacco Rattle Virus (TRV) Mediated Whole-Plant Virus-Induced Gene Silencing (VIGS) in Wheat and Maize. Frontiers in Plant Science, 8(March), 1–12.
Zhang, S. (2001). Activation of Salicylic Acid-Induced Protein Kinase, a Mitogen-Activated Protein Kinase, Induces Multiple Defense Responses in Tobacco. The Plant Cell Online, 13(8), 1877–1889.
Zhang, S., & Klessig, D. F. (2001). MAPK cascade in plant defense signaling. Trends Plant Sci., 6(11), 520–527.
Zhang, X. (2001). Hydrogen Peroxide Is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba. Plant Physiology, 126(4), 1438–1448.
Zhou, X. M., Zhao, P., Wang, W., Zou, J., Cheng, T. H., Peng, X. B., & Sun, M. X. (2015). A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Research, 22(4), 245–257.
Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20(1), 10–16.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw