進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201618381100
論文名稱(中文) 利用鹵素摻雜之氧化鋁製作增強型氮化鎵高電子移動率場效電晶體之研究
論文名稱(英文) Study of Halogen Doping Aluminum Oxide Deposition on Enhancement-Mode AlGaN/GaN MOS-HEMT
校院名稱 成功大學
系所名稱(中) 奈米積體電路工程碩士學位學程
系所名稱(英) Master Degree Program on Nano-Integrated Circuit Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林志偉
研究生(英文) Chih-Wei Lin
學號 q76031057
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-許渭州
指導教授-江孟學
指導教授-劉漢胤
口試委員-李景松
口試委員-周榮泉
口試委員-王水進
口試委員-劉文超
中文關鍵字 氮化鋁鎵/氮化鎵  增強型元件  高電子遷移率電晶體  超音波霧化熱裂解  氧化層摻雜  掘入式閘極  氟離子佈植。 
英文關鍵字 AlGaN/GaN  enhancement mode  high electron mobility transistor  ultrasonic spray pyrolysis  doping oxide  gate recess  fluorine ion implantation. 
學科別分類
中文摘要 本論文主要探討利用超音波霧化熱裂解法沉積摻雜氯離子之氧化鋁於增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究。並探討不同的製程方式將掘入式閘極與氟離子佈植應用於氮化鋁鎵/氮化鎵高電子遷移率電晶體,以獲得臨界電壓(Vth)為正之元件及其特性。
為瞭解超音波霧化熱裂解法所形成之氧化層的組成,在本論文中使用了原子力顯微鏡、穿透電子顯微鏡、化學分析電子儀進行探討。在原子力顯微鏡量測中,可以驗證成長的薄膜相當的均勻。在穿透電子顯微鏡中,觀察成長的薄膜厚度為20奈米。在化學分析電子儀中的縱深分析,可得知氧化層中的化學成分組成確認是氧化鋁。在瞭解薄膜之材料分析後,進一步研究氧化鋁及摻雜氯離子之氧化鋁技術應用於增強式之氮化鋁鎵/氮化鎵高電子遷移率電晶體上。我們發現使用摻雜技術在臨界電壓上可正偏至1.5伏特與未摻雜之元件臨界電壓1.2伏特相較有較正之特性表現。此外,使用氟離子佈植技術的元件與掘入式閘極元件相比有更大的操作電流以及更低之漏電流。
而超音波霧化熱裂解法沉積氧化鋁於金氧半高電子遷移率電晶體上,先利用比較不同厚度找出最佳的元件特性,同時也發現在厚度為20奈米的氧化層之元件有最佳的特性改善。在電流電壓特性可操作至3伏特閘極電壓,崩潰電壓可承受至180伏特。除此之外,在臨界電壓表現上,正偏表現提升25%,且閘極漏電流下降,因此超音波霧化熱裂解法沉積氧化鋁摻雜氯離子之元件具有同時提升元件臨界電壓及降低漏電流之潛力。
英文摘要 This thesis proposes the halogen doping of aluminum oxide (Al2O3) stacked on the e-mode AlGaN/GaN high electron mobility transistors (HEMTs) by using ultrasonic spray pyrolysis deposition (USPD). We found that the doping oxide deposit on the enhancement mode AlGaN/GaN HEMTs can achieve more positive threshold voltage shift.
In order to analyze the oxide layer composition, we utilized the atomic force microscopy (AFM), transmission electron microscopy (TEM), electron spectroscopy for chemical analysis (ESCA), and Hall measurement in the research. We observe that the surface roughness is quite uniform by AFM. Then, we confirm that the thickness of oxide layer is 20 nm through TEM. Besides, in ESCA analysis, the results show the oxide layer is exactly Al2O3. In addition, the decreased oxide layer trap density is confirmed by the hysteresis and interface state density.
Gate recess, fluorine ion implantation and doping oxide are applied to the fabrication of AlGaN/GaN HEMTs. We found that threshold voltage of doping oxide device can shift to 1.5V, which is more positive 0.3V than only Al2O3 device. In addition, fluorine ion implantation device has larger drain current and reliability than gate recess device.
Finally, we propose that the Al2O3 oxide layer applied to metal-oxide-semiconductor MOSHEMT by using ultrasonic spray pyrolysis technique is studied the optimal thickness of the oxide layer is 20 nm. Gate voltage of device can be operated up to 3V and the breakdown voltage is over 180 V. Moreover, threshold voltage of device with doping oxide achieves 25 % positive shift. Therefore, the device which deposited Al2O3 on AlGaN/GaN HEMTs by using ultrasonic spray pyrolysis technique with halogen doping is suitable for modulate threshold voltage and reduce gate leakage.
論文目次 摘 要II
Abstract IV
Contents IX
Figures XI
Table Captions XIV
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Organization of Thesis 5
Chapter 2 Characterization of AlGaN/GaN 6
2-1 Group III-Nitride Semiconductors 6
2-2 GaN-based Device 6
2-3 Principle of AlGaN/GaN 8
Chapter 3 Material Growth and Devices Fabrication 10
3-1 Epitaxy Structure 10
3-2 Fabrication Process 10
3-2-1 Mesa Isolation 12
3-2-2 Source and Drain Ohmic Contact 13
3-2-3 Fluorine Ion Implantation 14
3-2-4 Gate Recess Process 14
3-2-5 Ultrasonic Spray Pyrolysis Deposition (USPD) 15
3-2-6 Gate Metallization 15
3-3 Metal-Oxide-Semiconductor (MOS) Diode Fabrication 16
Chapter 4 Results and Discussion 17
4-1 Materials Analysis 17
4-1-1 Atomic Force Microscopy 17
4-1-2 Transmission Electron Microscopy 18
4-1-3 Electron Spectroscopy for Chemical Analysis 18
4-2 Capacitance-Voltage Characteristics 19
4.2.1 Dielectric Constant 19
4-2-2 Hysteresis 20
4.2.3 Interface State Density 21
4-3 DC Characteristics 21
4-3-1 Output Characteristics 21
4-3-2 Transfer Characteristics 22
4-3-3 Off-state Breakdown Voltage Characteristics 23
4-4 Temperature-Dependent DC Characteristics 25
4-4-1 Temperature-Dependent Output Characteristics 25
4-4-2 Temperature-Dependent Transfer Characteristics 26
4-4-3 Temperature-Dependent Breakdown Characteristics 26
Chapter 5 Conclusion 28
References 29
Figures 34
參考文獻 References
[1] M. Kameche, and N. V. Drozdovski, “GaAs-, InP-, and GaN HEMT-based Microwave Control Devices: What is Best and Why,” Microwave J., vol. 48, no. 5, pp. 64-180, 2005.
[2] Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan,“Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator,” Appl. Phys. Lett., vol. 95, pp. 223501-1-223501-3, 2009.
[3] P. Kordoš, D. Gregušová, R. Stoklas, Š. Gaž , and J. Novák,“Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure Field-effect Transistors with Al2O3 of Different Thickness,” Solid-State Electron., vol. 52, pp. 973-979, 2008.
[4] S. Basu, P. K. Singh, P. W. Sze, and Y. H. Wang,“AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. H947-H951, 2010.
[5] O. Seok, W. Ahn, M. K. Han, and M. W. Ha,“High on/off current ratio AlGaN/GaN MOSHEMTs employing RF-sputtered HfO2 gate insulators,” Semicond. Sci. Technol., vol. 28, pp. 025001-1-025001-6, 2013.
[6] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOSHEMT Performance by Using Hydrogen Peroxide Oxidation Technique,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 213-220, 2013.
[7] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Novel Oxide-Passivated AlGaN/GaN HEMT by Using Hydrogen Peroxide Treatment,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4430-4433, 2011.
[8] Y. F. Chen, F. R. Chen, and C. H. Tsai, “Compositional Effect of precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Deposition,” Department of Engineering and System Science, National Tsing Hua University, 2011.
[9] J. S. Moon, S. Wu, D. Wong, I. Milosavljevic, A. Conway, P. Hashimoto, M. Hu, M. Antcliffe, and M. Micovic, “Gate-recessed AlGaN-GaN HEMTs for high-performance millimeter-wave applications,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 348–350, Jun. 2005.
[10] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M. S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate,” Electron. Lett., vol. 36, no. 8, pp. 753–754, Apr. 2000.
[11] N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Low-leakage-current enhancement-mode AlGaN/GaN heterostructure field-effect transistor using p-type gate contact,” Jpn. J. Appl. Phys., vol. 45, no. 11, pp. L319–L321, Mar. 2006.
[12] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, Dec. 2007.
[13] Masataka Higashiwaki, Takashi Mimura, Fellow, IEEE, and Toshiaki Matsui,Member, IEEE, “Enhancement- Mode AlN/GaN HFETs Using Cat-CVD SiN”, IEEE TRANSANCTIONS ON ELECTRON DEVICES, VOL.54, NO6,JUNE07.
[14] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
[15] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessedgate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356–362, Feb. 2006.
[16] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207–2215, Sep. 2006.
[17] Ruonan Wang, Yong Cai, Wilson C.W.Tang, Kei May Lau and Kevin J.Chen, “Integration of enhancement and depletion-mode AlGaN/GaN MIS-HFETs by fluoride-based plasma treatment.” Phys. sat. sol. (a) 204, No 6,2023-2027 (2007)
[18] T. Palacios, Student Member, IEEE, C.-S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, Senior Member, IEEE, and U. K. Mishra, Fellow, IEEE "High-Performance E-mode AlGaN/GaN HEMTs" IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 6, JUNE 2006
[19] Tohru Oka, Senior Member, IEEE, and Tomohiro Nozawa"AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications" IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 7, JULY 2008
[20] Y. Chao, J. Xiong, J. Wei, J. Wu, B. Zhang, and X. Luo, “High Performance Enhancement-Mode AlGaN/GaN MIS-HEMT with Selective Fluorine Treatment,” Advances in Condensed Matter Physics, Volume 2015 (2015), Article ID 267680, 7 pages.
[21] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices 3rd edition,” JOHN WILEY & SON, 2007.
[22] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233.
[23] H. P. Maruska, J. J. Tietjen, “The Preparation and Properties of Vapor-deposited Single Crystalline GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
[24] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233.
[25] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III-nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, 2000.
[26] R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, and M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, no. 6, pp. 707-709, 1998.
[27] T. B. Wang, “Improved Nitride-based Optical and Electrical Devices,” Ph.D. Thesis, National Cheng-Kung University, 2007.
[28] D. A. Neamen, “Semiconductor physics and devices: basic principles 3rd ed.,” Mc Graw Hill, New York, pp. 351-354, 2003.
[29] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001.
[30] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Mircoscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, 1986.
[31] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force mircoscope-force mapping and profiling on a sub 100 Å scale,” Appl. Phys. Lett., vol. 61, pp. 4723-4729, 1987.
[32] J. C. Vickerman, “Surface Analysis-the Principal Techniques,” John Wiley & Son, 2000.
[33] B. G. Yacobi, “Semiconductor Materials: an Introduction to Basic Principles,” Kluwer Academic, 2003.
[34] B. G. Yacobi, “Semiconductor Materials: an Introduction to Basic Principles,” Kluwer Academic, 2003.
[35] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, pp. 063501, 2005.
[36] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” New York: Wiley, 1982.
[37] S. J. Chang and J. G. Hwu, “Comprehensive Study on Negative Capacitance Effect Observed in MOS(n) Capacitors With Ultrathin Gate Oxides,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 684-690, 2011.
[38] M. K. Chattopadhyay, and S. Tokekar, “Temperature and Polarization Dependent Polynomial Based Non-linear Analytical Model for Gate Capacitance of AlmGa1-mN/GaN MODFET,” Solid-State Elctron., vol. 50, pp. 220-227, 2006.
[39] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-Stability Improvement of a Sulfur-Passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. on Device and Materials Reliability,, vol. 6, no. 1, pp. 52-59, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw