進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201617381800
論文名稱(中文) 矽太陽能電池驅動全固態式電致變色元件
論文名稱(英文) All-Solid Electrochromic Device Driven by Silicon Solar Cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 張文豪
研究生(英文) Wen-Hao Chang
學號 l76034108
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-李欣縈
口試委員-李清庭
口試委員-劉代山
口試委員-林祐仲
中文關鍵字 全固態式電致變色  氧化鎢  五氧化二鉭  氧化鎳 
英文關鍵字 all-solid electrochromic device  nickel oxide  tantalum pentoxide  tungsten oxide 
學科別分類
中文摘要 本研究利用磁控式射頻濺鍍系統製備全固態式電致變色元件之各層薄膜,藉由調控氧化鎢、五氧化二鉭與氧化鎳薄膜之射頻功率、氬氣/氧氣流量比例與薄膜厚度等製程參數,量測在不同條件下製備之氧化鎢、五氧化二鉭與氧化鎳薄膜在著色、去色狀態下的穿透率與其循環伏安曲線,尋找最佳的著色、去色穿透率差值(ΔT)與光學密度差(ΔOD)。將其薄膜應用於全固態式元件,並測量全固態式電致變色元件於不同電壓下之著色、去色穿透率及時間響應圖,最後以太陽能電池結合驅動全固態電致變色元件。
由實驗結果得知,當電致變色元件施加+-1 V下,無法驅動元件產生著色、去色的變化,當電致變色元件在+-4 V的外加偏壓下,其著色、去色穿透率差值ΔT=48.1%及光學密度差ΔOD=0.58,而當外加偏壓增加至+-5 V時,元件明顯燒毀,其結果顯示其偏壓已超過元件可負荷的程度。當偏壓為+-3 V其著色時間為14.8秒、去色時間為6秒;最後以太陽能板串聯全固態電致變色元件,於太陽光照射下,運作電壓約為3 V及電流約為100 mA下,可以成功驅動全固態電致變色元件,使其正常運作。
英文摘要 In this thesis, all-solid electrochromic devices were fabricated by magnetic radio frequency (RF) sputtering system. The characteristics of optical transmittance in bleached/colored state and cyclic voltammetry for tungsten oxide (WO3), tantalum pentoxide (Ta2O5), and nickel oxide (NiO) films with various parameters were investigated and optimized for optical modulation and optical density. The optimal films were applied to all-solid electrochromic devices. The optical transmittance and response time of all-solid electrochromic devices under different applied voltage were measured. Finally, the all-solid electrochromic device was driven by silicon solar cells.
The experimental results demonstrated that all-solid electrochromic devices could not work under applied voltage of ±1 V. At applied voltage of ±5 V, the devices broke down. At applied voltage of ±4 V, the response time of the electrochromic devices was about 14.8 s for coloring step and 6 s for bleaching step. Finally, all-solid electrochromic device could successfully drive by silicon solar cells with applied voltage of 3 V and current of 100 mA under sun light.
論文目次 摘要 I
Abstract III
誌謝 XI
表目錄 XV
圖目錄 XVI
第一章 序論 1
1.1 前言 1
1.2 研究目的 3
第二章 實驗原理簡介 5
2.1 電致變色原理及材料 5
2.2 電致變色元件 6
2.2.1 主要變色層 7
2.2.2 固態離子傳導層 8
2.2.3 輔助變色層 9
2.3 磁控式射頻濺鍍原理 11
2.4 循環伏安儀原理 12
2.5 太陽能電池發電基本原理 13
第三章 實驗規劃與元件製程 20
3.1 實驗流程 20
3.2 試片清潔 20
3.3 實驗濺鍍 21
3.3.1 實驗材料 21
3.3.2 濺鍍步驟及條件 21
3.4 薄膜分析 23
3.4.1 濺鍍速率量測 23
3.4.2 電化學反應分析 24
3.4.3 光學特性分析 24
3.5 太陽能電池結合元件 25
第四章 實驗量測與結果討論 30
4.1 主要變色層氧化鎢特性分析 30
4.1.1 調變射頻功率比較 30
4.1.2 調變氬氣/氧氣流量比例 32
4.1.3 不同薄膜厚度比較 35
4.2 加上離子傳導層後特性分析 36
4.2.1 調變射頻功率比較 36
4.2.2 調變氬氣/氧氣流量比例 38
4.3 輔助變色層氧化鎳特性分析 40
4.3.1 調變射頻功率比較 40
4.3.2 調變氬氣/氧氣流量比例 42
4.3.3 不同薄膜厚度比較 43
4.4 全固態元件分析 45
4.4.1 以電壓驅動全固態元件特性 45
4.4.2 以太陽能電池驅動全固態元件特性 47
第五章 結論 73
參考文獻 75

參考文獻 [1] C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G. A. Niklasson, C. G. Ribbing, D. Rönnow, M. Strømme Mattsson, and M. Veszelei, “Towards the smart window: progress in elechromics”, Journal of Non-Crystalline Solids, 218, pp. 273-279 (1997)
[2] 邱顯堂,變色性材料,化工技術, 38 (1991)。
[3] P. Monk, R. Mortimer, and D. Rosseinsky, “Electrochromism and electrochromic devices”, Cambridge University Press, (2007).
[4] M. Irie, “Photochromism : memories and switches-introduction”, Chemical Reviews, ACS Publications, (2000)
[5] J. C. Crano and R. J. Guglielmetti, “Organic photochromic and thermochromic compounds : volume2 : physicochemical studies, biological applications, and thermochromism”, Springer Science & Business Media, (1999).
[6] S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, A. W. Czanderna, and S. K. Deb, “Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency”, Applied Physics Letter, 75, pp. 1541-1543 (1999).
[7] E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, and K. Sasaki, “Optical and electrochromic properties of RF reactively sputtered WO3 films” Solid State Ionics, 165, pp. 175-180 (2003)
[8] H. R. Zeller and H. U. Beyeler, “Electrochromism and local order in amorphous WO3”, Applied Physics Letter, 13, pp. 231-237 (1977)
[9] P. Pfluger, H. U. Künzi, and H. J. Güntherodt, “Discovery of a new reversible electrochromic effect”, Applied Physics Letter, 35, pp. 771-772 (1979).
[10] K. Boufker, “Lithiation study of molybdenum oxide thin- films -application to an electrochromic system”, Journal of Applied Electrochemistry, 25, pp. 797-802 (1995).
[11] M. A. Habib and D. Glueck, “The electrochromic properties of chemically deposited tungsten oxide films”, Solar Energy Materials, 18, pp. 127-141 (1989)
[12] S. Gottesfeld, “The anodic rhodium oxide film-a two-color electrochromic system”, Journal of the Electrochemical Society, 127, pp. 272-277 (1980).
[13] T. Ohtasuka, M. Masuda, and N. Sato, “Cathodic reduction of anodic oxide films formed on titanium”, Journal of the Electrochemical Society, 134, pp. 2046-2410 (1987).
[14] J. Nagao, “Characterization of evaporated nickel oxide and its application to electrochromic glazing”, Solar Energy Materials and Solar Cells, 31, pp. 291-299 (1993).
[15] D. Shaojun and L. Fengbin, “Researches on chemically modified electrodes: part XV. Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode”, Journal of Electroanalytical Chemistry, 210, pp. 31-44 (1986).
[16] K. J. Kulesza and M. Faszynska, “Indium(III)-Hexacyanof errate as a novel polynuclear mixed-valent inorganic material for preparation ofthin zeolitic films on conducting substrates”, Journal of Electroanalytical Chemistry, 252, pp. 461-466 (1988).
[17] Z. Gao, G. Wang, P. Li and Z. Zhao, “Electrochemical and spectroscopic studies of cobalt-hexacyanoferrate film modified electrodes” Electrochimica Acta, 36, pp. 147-152 (1991).
[18] B. Munro, S. Krämer, P. Zapp, and H. Krug, “Characterization of electrochromic WO3-layers prepared by sol-gel nanotechnology”, Journal of Sol-Gel Science and Technology, 13, pp. 673-638 (1998).
[19] N. Őzer, “Optical and electrochemical characteristics of sol-gel deposited tungsten oxide films: a comparison”, Thin Solid Films, 304, pp. 310-314 (1997).
[20] W. Estrada, A. M. Aderson, and C. G. Granqvist, “Elecrochromic nickel – oxide – based coatings made by reactive dc magnetron sputtering : preparation and optical properties”, Journal of Applied Physics, 64, pp. 3678-3683 (1988).
[21] W. Lu, A. G. Fadeev, B. Qi, and B. R. Mattes, “Fabricating conducting polymer electrochromic devices using ionic liquids”, Journal of Electrochemical Society, 151, pp. 33-39 (2004).
[22] C. G. Granvist, “Transparent conductive electrodes for electrochromic devices :a review”, Applied Physics Letter, 57, pp. 19-24 (1993).
[23] S. K. Deb, “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications”, Solar Energy Materials & Solar Cells, 92, pp. 245-258 (2008)
[24] 林保彰,“三氧化鎢薄膜電極之製備及其電致變色性質之研究", 國立台灣大學化學工程學研究所碩士論文 (1998)。
[25] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Rönnow, M. Strømme Mattsson, M. Veszelei, G. Vaivars, “Recent advances in electrochromics for smart windows applications”, Solar Energy, 63, pp. 199-216 (1998).
[26] F. G. K. Baucke, “Electrochromic Applications”, Materials Science and Engineering B, 10, pp. 285-292 (1991).
[27] C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindstrom, G. A. Niklasson, C. G. Ribbing, D. Ronnow, M. S. Mattson, and M. Veszelei, “Towards the smart windows: progress in electrochromics”, Journal of Non-Crystalline Solids, 218 , pp. 273-279 (1997).
[28] C. G. Granqvist, “Electrochromic tungsten oxide films review of progress 1993-1998”, Solar Energy Materials and Solar Cells, 60, pp. 201-262 (2000).
[29] B. W. Faughnan, R. S. Crandall, and P. M. Heyman, “Electrochromism in WO3 amorphous films”, RCA Review, 36, pp. 177-197 (1975).
[30] C. M. Lampert, “Smart switchable glazing for solar energy and daylight control”, Solar Energy Materials and Solar Cells, 52, pp. 207-221 (1998).
[31] C. G. Granvist, “Handbook of inorganic electrochromic materials”, Elsevier (1995).
[32] T. Saito, Y. Ushio, M. Yamada, and T. Niwa, “Properties of tantalum oxide thin film for solid electrode”, Solid State Ionics, 40-41, pp. 499-501 (1990).
[33] V. Srinivasan, J. W. Weidner, “Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration”, Electrochemical society, 147, pp. 880-885 (2000).
[34] D. D. Ragan, “Magnetic measurements on electrochromic Ni-oxide-based films”, American Institude of Physics, 82, pp. 1759-1762 (1997).
[35] A. Azens, “Sputter-deposited nickel oxide for electrochromic applications”, Solid State Ionics, 113-115, pp. 449-456 (1998).
[36] K. S. Ahn, Y. C. Nah, and Y. E. Sung, “The effect of RF power in the electrochromic response time of sputter-deposited Ni oxide films”, Japanese Journal of Applied Physics, 41, pp. 533-535 (2002).
[37] C. Li, J. H. Hsieh, M. T. Hung, and B. Q. Huang, “Electrochromic study on amorphous tungsten oxide films by sputtering”, Thin Solid Films, 587, pp. 75-82 (2015).
[38] J. Zheng, J. P. Tu, X. H. Xia, Y. Qiao, Y. Lu, “ An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte”, Solar Energy Materials and Solar Cells, 93, pp. 1840-1845 (2009).
[39] M. J. Duggan, T. Saito, and T. Niwa, “Ionic conductivity of tantalum oxide by rf sputtering”, Solid State Ionics, 62, pp. 15-20 (1993).
[40] 顏依齡,“磁控濺鍍電致變色氧化鎢於聚對苯二甲酸乙二醇酯導電軟性基板之研究”,逢甲大學材料所碩士論文,2006。
[41] Y. Abe, N. Itadani, M. Kawamura, K. Sasaki, and H. Itoh, “Ion conducting properties of hydrogen-containing Ta2O5 thin films prepared by reactive sputtering”, Vacuum, 83, 528-530 (2008).
[42] 吳姿蓉,“電子束蒸鍍製備氧化鎳薄膜之電致變色性質研究”,國立成功大學材料所碩士論文,2008。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw