進階搜尋


下載電子全文  
系統識別號 U0026-2008201521502400
論文名稱(中文) 具微觀結構之軟性高分子材料之黏彈性質
論文名稱(英文) Viscoelastic Properties of Soft Polymer with Microstructures
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 1
出版年 104
研究生(中文) 廖思閔
研究生(英文) Ssu-Min Liao
電子信箱 lsmgamebravo@gmail.com
學號 N66024454
學位類別 碩士
語文別 英文
論文頁數 95頁
口試委員 指導教授-王雲哲
口試委員-黃忠信
口試委員-林育芸
口試委員-侯琮欽
中文關鍵字 Cosserat 力學  黏彈性質  泡沫材料  高分子聚合物  複合材料 
英文關鍵字 Cosserat mechanics  Viscoelatic properties  foam  polymer  composites 
學科別分類
中文摘要 本研究將分別探討動態實驗下,所量測的泡沫材料性質,並與具微觀結構材料之數值模擬和Cosserat材料理論,相互比較與驗證,此外探討熱彈效應對鐘擺式黏彈頻譜儀所量測之正切消散模數的影響。COMSOL數值計算顯示,2D模型在靜態外力下,改變模型的形狀大約可以使楊式模數與剪力模數差距10倍,而體積模數可達千倍。隨著角度減小,負普松現象快速的消失。隨著微觀結構角度的增加,普松比提升有收斂之趨勢。隨著材料微觀結構尺寸越來越小,彈性模數有些微增加的趨勢,符合Cosserat理論的預測,亦即試體越小,彈性模數越大。Cosserat beam 與Euler beam 以及模擬結果相比在正規化的曲率100下,沒有相當大的偏差出現。此外、由理論熱彈效應所計算之Debye peak 峰約於0.01於低頻段1 10 Hz,而矽膠與橡膠所量測低頻段正切消散模數約為0.03,大約差10-30%,於此峰頻率下,實驗結果皆有稍微起伏的現象。
英文摘要 This research studies the effects of microstructures on overall mechanical properties of materials. The pendulum-type viscoelastic spectrometer (PVS) was adopted to measure foams and other microstructured polymer. Finite element calculations of microstructured materials with COMSOL were performed, and their results are correlated with the Cosserat theory. Under the quasi-static assumptions, the calculated effective modulus of the foam may exhibit a factor of 10 difference for the Young’s and shear modulus. For the bulk modulus, the effects of microstructure may reach a three order of magnitude difference. Calculated negative Poisson’s ratio of the foam may rapidly disappear in terms of the defined microstructural angles. With the angle decreases, Poisson’s ratio of the foam reaches a plateau. Furthermore, the effective elastic constants of the foamed materials increase as their size decrease; consistent with the Cosserat theory. In addition, the thermoelastic damping measured from the PVS experiment is consistent with the theory in terms of the location of frequency, but its damping magnitude is not matched.
論文目次 CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Cosserat mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Torsion vibration of a circular cylinder . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Longitudinal vibration of a circular cylinder . . . . . . . . . . . . . . . . . . . 8
2.4 Constitutive law of anisotropic material . . . . . . . . . . . . . . . . . . . . . 9
2.5 Thermoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Linear equations and frequency domain formulation . . . . . . . . . . 13
2.5.2 Constitutive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 General experiment elaborate . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Description of PVS instrument . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Experiment process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Generation of pure bending and torsion by Magnet and Helmholtz coil . 23
3.2.3 Interaction between Laser and Position sensor . . . . . . . . . . . . . . 24
3.2.4 Equipment of data processing and presenting . . . . . . . . . . . . . . 25
3.3 Sample description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Mag-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 Experiment data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1 Aluminum foam data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Polymer foam data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Silicone gel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Silicone rubber data . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.5 Rubber data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.6 Thermoelastic damping . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.7 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Simulation by finite element . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 2D Auxetic structure simulation . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 2D Voronoi simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 2D ordered hexagon structure simulation . . . . . . . . . . . . . . . . 75
5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
APPENDICES
Appendix A: Random Vibration of Silicone Rubber RTV585 . . . . . . . . . . . . 81
Appendix B: Silicone Rubber of MTS experiment . . . . . . . . . . . . . . . . . 82
Appendix C: 3D Voronoi simulation . . . . . . . . . . . . . . . . . . . . . . . . . 83
Appendix D: Presentation slide . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
參考文獻 [1] R. D. Gauthier and W. E. Jahsman. A quest for micropolar elastic constants. Journal of
Applied Mechanics, 42(2):369, 1975.
[2] R. S. Lakes. A pathological situation in micropolar elasticity. Journal of Applied Mechanics,
52(1):234, 1985.
[3] R.S. Lakes. Experimental microelasticity of two porous solids. International Journal of
Solids and Structures, 22(1):55–63, 1986.
[4] S. Liu and W. Su. Effective couple-stress continuum model of cellular solids and size
effects analysis. International Journal of Solids and Structures, 46(14-15):2787–2799,
2009.
[5] L. J. Gibson and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge
University Press, Cambridge, UK, 1999.
[6] S. Torquato, L.V. Gibiansky, M.J. Silva, and L.J. Gibson. Effective mechanical and
transport properties of cellular solids. International Journal of Mechanical Sciences,
40(1):71–82, 1998.
[7] P. A. Romero, S. F. Zheng, and A. M. Cuiti˜no. Modeling the dynamic response of viscoelastic
open-cell foams. Journal of the Mechanics and Physics of Solids, 56(5):1916–
1943, 2008.
[8] S. Alvermann and M. Schanz. Effective dynamic material properties of foam-like microstructures.
Proceedings in Applied Mathematics and Mechanics, 5(1):223–224, 2005.
[9] R.S. Lakes. Foam structures with a negative poisson’s ratio. Science, 235(4792):1038–
1040, 1987.
[10] X. Yang, Y. Xia, and Q. Zhou. Influence of stress softening on energy-absorption capability
of polymeric foams. Materials & Design, 32(3):1167–1176, 2011.
[11] A.C. Smith. Torsion and vibrations of cylinders of a micro-polar elastic solid. Recent
Advances in Engineering Science, 5:129–137, 1970.
[12] H. C. Park and Roderic Lakes. Torsion of a micropolar elastic prism of square cross
section. Journal of Solids Structures, 23(4):485–503, 1987.
[13] S.W. Park. Analytical modeling of viscoelastic dampers for structural and vibration control.
International Journal of Solids and Structures, 38(44-45):8065–8092, 2001.
[14] O. Lopez-Pamies. An exact result for the macroscopic response of particle-reinforced
neo-hookean solids. Journal of Applied Mechanics, 77(2):021016, 2010.
[15] Y. C. Wang and C. C. Ko. Energy dissipation of steel-polymer composite beam-column
connector. Steel and Composite Structures, 18(5):1161–1176, 2015.
[16] J. Woirgard, Y. Sarrazin, and H. Chaumet. Apparatus for the measurement of internal
friction as a function of frequency between 10-5 and 10 hz. Review of Scientific Instruments,
48(10):1322, 1977.
[17] M. Brodt, L. S. Cook, and R. S. Lakes. Apparatus for measuring viscoelastic properties
over ten decades: Refinements. Review of Scientific Instruments, 66(11):5292, 1995.
[18] R.S. Lakes. Viscoelastic Materials. Cambridge University Press, Cambridge, UK, 2009.
[19] Yun-Che Wang, Chih-Chin Ko, and Li-Ming Shiau. Accurate determination of torsion
and pure bending moment for viscoelastic measurements. International Journal of Modern
Physics: Conference Series, 24:1360016, 2013.
[20] Yun-Che Wang, Chih-Chin Ko, Hong-Kuan Wu, and Yu-Ti Wu. Pendulum-type viscoelastic
spectroscopy for damping measurement of solids. Japan Society of Mechanical
Engineers, 13:s137–s142, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-01-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-01-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw