進階搜尋


下載電子全文  
系統識別號 U0026-2008201512165700
論文名稱(中文) 射頻前端毫米波積體電路之研製
論文名稱(英文) MMIC for RF Front-End in Millimeter-Wave System
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 103
學期 2
出版年 104
研究生(中文) 蘇俊吉
研究生(英文) Chun-Chi Su
電子信箱 cv@ms11.url.com.tw
學號 Q18961191
學位類別 博士
語文別 中文
論文頁數 100頁
口試委員 指導教授-王永和
口試委員-侯建安
口試委員-朱鎮國
口試委員-林哲弘
口試委員-劉宏智
口試委員-邱瑞杰
口試委員-鄭光偉
口試委員-洪茂峰
口試委員-辛裕明
中文關鍵字 Ka頻段  藍吉耦合器  相移器  反射型  寬頻  巴倫  次諧波混波器  昇頻  隔離增強  降頻  衰減器  功率合成器  功率分配器 
英文關鍵字 Ka-band  Lange coupler  Phase shifter  subharmonic mixer  Attenuator 
學科別分類
中文摘要 本論文主要研究使用砷化鎵/氮化鎵製程製作射頻前端之關鍵元件,應用於毫米波通訊系統的收發機射頻前端電路元件。本論文分成五大部,第一部份,一個操作在Ka頻帶可寬頻操作180°的微波積體電路相移器,利用藍吉耦合器和場效電晶體所組合,具有精確相移和固定功率輸出效果。利用一種新的高電子遷移率砷化鎵電晶體佈局,降低電晶體的寄生效應,提高開關的隔離度。通過藍吉耦合器的寬頻操作效果,使該相移器具有寬頻操作和低插入損失變化,以及良好的反射損失條件,量測結果顯示,操作頻寬在30GHz至37GHz,插入損失在9dB至10dB之間,0°和180°具有小於1dB的插入損失變化,反射損失大於17dB以上。第二部分,一個反射式相移器,使用3dB藍吉耦合器和兩個反射負載,操作在Ka頻帶,其反射負載由一個固定電感和對接二極體變容器,所形成的LC諧振,可以用來減少相移器的插入損失,並在不同相移操作下,降低插入損失變化。操作在30GHz至40GHz,45度的相移變化量下,插入損失僅在1.75dB至3dB範圍,振幅誤差變化僅在±0.25dB,該設計除了可以減少晶片面積,並可多級串聯使用。第三部分,一個操作在24-44 GHz具有高隔離高增益的次諧波混波器,使用0.15µm的GaAs pHEMT的製程技術,實現在晶片尺寸面積為1.33×0.82 mm2。這個次諧波混波器的配置是由一個中頻(IF)前置放大器和一個射頻(RF)放大器,以及使用一對相反並聯的二極體(Anti-Parallel Diode ,APDP)所組成。IF前置放大器設置可增加本地訊號(LO)和IF之間的隔離,而射頻放大器的設置,可放大射頻信號實現次諧波混波器的高轉換增益,兩個定向的耦合微帶線都用於增加IF到RF,LO到IF,和LO號RF之間的隔離度。實測結果顯示,混波器的轉換增益從24到44 GHz在6到10.5dB,IF到RF、LO到IF、LO到RF和2LO到RF的隔離度,分別為24.5–27.1 dB、32.4–39.6 dB、20.6–24.6 dB、48.4–65 dB。第四部分,一種新的180°混合耦合線,利用兩個λ/ 4的三條耦合微帶線所構成,應用在單平衡的次諧波降頻混波器,使用0.15µm的GaAs pHEMT技術,其晶片面積小於0.82×0.83 mm2。該混波器利用180°混合耦合線,結合相反並聯的二極體(APDP)將LO與RF混波產生IF訊號,再經過低通濾波器獲得降頻混波的IF訊號,具有低轉換損失9 dB 到14 dB與寬頻操作等優異表現。最後部分,一種新的高線性寬頻衰減器,是利用一個90°混合功率分配,將功率一分為二,經過兩組0°~90°相移器,使兩訊號同功率但相位具有0°~180°變化的差值,再利用威金森功率分配器結合,透過兩個0~180°相位差訊號的結合,來控制衰減器的衰減量變化。該衰減器操作頻寬在15GHz 到40 GHz,是目前所知MMIC衰減器中,操作在毫米波頻段具有最大之線性度處理能力,並且具有能保持恆相位輸出能力。晶片製作後所量測在15GHz 到40 GHz有大於12dB的衰減範圍,在15-32GHz有大於20dB以上的衰減範圍,整個頻段的插入損失約4dB至5dB,操作頻寬與模擬計算預測相當接近,衰減器在35GHz最大之線性度處理(IP1dB)大於20dBm,利用兩組相移器,能固定在某個頻率點控制衰減下的相位維持固定,整體晶片面積為1.4 x 1.2 mm2。
英文摘要 SUMMARY
The growing demand for wide operational bandwidth,high-speed data transfer, low manufacturing cost, and low power consumption has become more prevalent in millimeterwave communication systems.This dissertation investigates the critical RF components fabricated by a standard GaAs/GaN process for millimeter-wave RF front-end Applications. This dissertation MMIC design includes a 30GHz to 37GHz 0°/180° switch Phase shifters, a 30GHz to 40GHz 45°/90° consecutive Phase Shifter, a 24 GHz to 44 GHz upconversion broadband subharmonic mixer ,a 37 to 85 GHz down-converter broadband subharmonic mixer ,and a 15 GHz to 40 GHz voltage-variable attenuator.
論文目次 摘要 I
Abstract III
誌謝 IX
目錄 X
圖目錄 XIII
表目錄 XVI
第 1 章 緒論 1
1.1 背景 1
1.1.1 毫米波通訊系統 1
1.1.2 陣列天線系統與相移器 2
1.1.3 收發機與混波器 3
1.2 研究動機 6
1.3 章節簡述 7
第 2 章 毫米波寬頻相移器設計 11
2.1 180度切換式相移器 11
2.1.1 前言 11
2.1.2 180度相移器操作原理 14
2.1.2.1 藍吉耦合器 14
2.1.2.2 射頻切換開關 16
2.1.2.3 電晶體佈局 17
2.1.3 180度相移器電路設計 18
2.1.4 相移器製作及模擬和量測數據 21
2.1.5 相移器性能比較 23
2.1.6 結果與討論 24
2.2 反射式相移器 25
2.2.1 前言 25
2.2.2 寬頻RTPS操作原理 26
2.2.3 寬頻相移器電路設計與製作 28
2.2.4 寬頻相移器模擬和量測數據 29
2.2.5 相移器性能比較 35
2.2.6 結果與討論 36
第 3 章 24-44 GHz高隔離度和高增益的次諧波昇頻混波器 37
3.1 前言 37
3.2 次諧波混波器操作原理 39
3.3 次諧波混波器電路設計及製作 42
3.4 次諧波混波器模擬和量測數據 44
3.5 次諧波混波器性能比較 46
第 4 章 180度單平衡混合耦合線的次諧波降頻混波器 48
4.1 前言 48
4.2 180°混合耦合微帶線分析與設計 49
4.3 次諧波混波器電路設計及製作 55
4.4 次諧波混波器模擬和量測數據 59
第 5 章 操作在Ku/Ka頻段的高線性寬頻衰減器 64
5.1 前言 64
5.2 衰減器分析與設計 69
5.2.1 RTPS設計 71
5.2.2 衰減器分析與設計 75
5.2.3 藍吉耦合器分析與設計 79
5.2.4 非對稱功率結合器分析與設計 80
5.3 衰減器晶片製作與模擬量測數據 83
5.4 衰減器性能比較 87
第 6 章 結論與未來工作 89
6.1 結論 89
6.2 未來期許與研究方向 91
參考文獻 92

參考文獻 [1] T. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol.1, May 2013, pp. 335–49.
[2] H. Zhao et al., “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City,”IEEE ICC ’13, June 2013, pp. 516–67.
[3] T. Kim et al., “Tens of Gbps Support with mmWave Beamforming Systems for Next Generation Communications,”IEEE GLOBECOM ’13, Dec. 2013, pp. 3790–95.
[4] F. Khan and Z. Pi, “mmWave Mobile Broadband (MMB):Unleashing the 3–300GHz Spectrum,” IEEE Sarnoff Symp. 34th, 2011.
[5] J. Murdock et al., “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” Wireless Commun. Network. Conf., Apr. 2012, pp. 3085–90.
[6] B. Razavi, “A 2.4 GHz CMOS receiver for IEEE 802.11 wireless LAN’s,” IEEE J. Solid-State Circuits, vol. 34, pp. 1382−1385, Oct. 1999.
[7] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[8] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancelers and a 45 degree phase shifter,” in IEEE Solid-State Circuits Conf. Dig. Tech. Papers, pp. 368−369, 1998.
[9] Z. Zhang, and J. Lau, “A flicker-noise-free DC-offset-free harmonic mixer in a CMOS process,” in IEEE radio and Wireless Conf. Dig. Tech. Papers, pp. 113−116, 2001.
[10] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, pp. 1329−1337, Sept. 2000.
[11] M. Tsuji, T. Nishikawa, K.Wakino, and T. Kitazawa, “Bi-directionally fed phased-array antenna downsized with variable impedance phase shifter for ISM band,” IEEE Trans. Microw. Theory Tech., vol. 54, no.7, pp. 2962–2969, Jul. 2006.
[12] R.V. Garver, “360 varactor linear phase modulator,” IEEE Trans. Microw.Theory Tech., vol. MTT-17, no. 3, pp. 137–147, Mar. 1969.
[13] B.T. Henoch and P. Tamm, “A 360 reflection-type diode phase modulator,”IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 1, pp.103–105, Jan. 1971.
[14] L. R. Whicker, “Forward-special issue on microwave control devices for array antenna systems,” IEEE Trans. Microw. Theory Tech., vol.MTT-22, no. 6, pp. 589–590, Jun. 1974.
[15] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara,T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw.Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[16] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp.1313–1317, Aug. 2000.
[17] Kang, D.-W., Lee, H.D., Kim, C.-H., and Hong, S.: ‘Ku-band MMIC phase shifter using a parallel resonator with 0.18-mm CMOS technology’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1),pp. 294–301
[18] M. Kim, J. Yang, and K. Yang, “Switched transmission-line type Q-band 4 b MMIC phase shifter using InGaAs PIN diodes,” Electron. Lett., vol. 46, no. 3, pp. 225–226, Feb. 2010.
[19] V. E. Dunn, N. E. Hodges, O. Sy, and W. Alyassini, “MMIC components for mm-wavelength active arrays,” Microwave J., pp. 109–116,Dec. 1989
[20] M. Aust, H. Wang, R. Carandang, K. Tan, C. H. Chen, T. Trinh, R. Esfandiari, and H. C. Yen, “GaAs monolithic components development for Q-band phased array application,” in IEEE MTT-S Int. Microwave Symp. Dig, Albuquerque, NM, June 1992, pp. 703–706
[21] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara,T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw.Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[22] D. Kang, J. Kim, B. Min, and G. M. Rebeiz, “Single and four-element Ka band transmit/receive phased-array silicon RFICs with amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3534–3543, Dec. 2009.
[23] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18μm CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp.95–97, Feb. 2009.
[24] J. H. Tsai, H. Y. Yang, T. W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless. Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008.
[25] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
[26] J. H. Tsai and T. W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Techniques, vol. 55, no. 10, pp. 2075–2085, Oct. 2007.
[27] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[28] C. L. Kuo., C. C. Kuo, C. H. Lien, J. H. Tsai, and H. Wang, “A novel reduced-size rat-race broadside coupler and its application for CMOS distributed sub-harmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.3, pp. 194-196, Mar. 2008.
[29] T. Y. Yang and H. K. Chiou, “A 28 GHz sub-harmonic mixer using LO doubler in 0.18-μm CMOS technology,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., San Francisco, CA, June 2006, pp. 209–212.
[30] S. K. Lin, J. L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 562-564, Oct. 2011.
[31] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62–64, Feb. 2005.
[32] H. K. Chiou and J. Y. Lin, “Symmetric offset stack balun in standard 0.13-μm CMOS technology for three broadband and low-loss balanced passive mixer designs,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1529–1538, June 2011.
[33] S. E. Gunnarsson, “Analysis and design of a novel ×4 subharmonically pumped resistive HEMT mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 809–816, Apr. 2008.
[34] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313–315, Jul. 2004.
[35] T. K. Johansen, J. Vidkjer, V. Krozer, A. Konczykowska, M. Riet, F. Jorge, and T. Durhuus, “A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler,” IEEE Trans. Microwave Theory Techniques, vol. 56, no. 3, pp.613–619, Mar. 2008.
[36] B. H. Lee, S. C. Kim, M. K. Lee, W. S. Sul, B. O. Lim, W. Y. Uhm, and J. K. Rhee, “Q-band high conversion gain active sub-harmonic mixer,” Current Applied Physics, no. 4, pp. 69-73, 2004.
[37] H. J. Wei, C. Meng, T. W. Wang, T. L. Lo, and C. L. Wang, “60-GHz dual-conversion down-/up-converters using Schottky diode in 0.18 um foundry CMOS technology ,” IEEE Trans. Microwave Theory Techniques, vol. 60, no. 6, pp. 1684–1698, June 2012.
[38] S. K. Lin, J. L. Kuo, and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13 um CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp.562–564, Oct. 2012.
[39] W. C. Chien, C. M. Lin, C. H. Liu, S. H. Hung and Y. H. Wang “Wide-band high isolation subharmonically pumped resistive mixer with active quasi-circulator," Progress In Electromagnetics Research Letters, Vol. 18, pp.135–143, 2010.
[40] J. Y. Su, C. Meng, and P. Y. Wu, “Q-Band pHEMT and mHEMT subharmonic Gilbert upconversion mixers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 392–394, June 2009.
[41] J. J. Kuo, C. H. Lien, Z. M. Tsai, K. Y. Lin, K. Schmalz, J. C. Scheytt, and H. Wang, “Design and Analysis of down-conversion gate/base-pumped harmonic mixers using novel reduced-size 180 hybrid with different input frequencies,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2473–2485, Aug. 2012.
[42] S. H. Hung, K. W. Cheng, and Y. H. Wang. “Broadband sub-harmonic mixer with a compact band pass filter,” in IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2012, pp.208-210.
[43] R. Svitek, and S. Raman, “5–6 GHz SiGe active I/Q subharmonic mixers with power supply noise effect characterization,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 319–321, July 2004.
[44] S. He and C. E. Saavedra, “An ultra-low-voltage and low-power x2 subharmonic downconverter mixer,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 311–317, Feb. 2012.
[45] C.-H. Lien, C.-H. Wang, C.-S. Lin, P.-S. Wu, K.-Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1966–1977, Aug. 2009.
[46] C. Y. Pon, “Hybrid-ring directional coupler for arbitrary power divisions,” IRE Trans. Microwave Theory Tech., vol. MTT-9, pp. 529–535, Nov. 1961.
[47] S. March, “A wideband stripline hybrid ring,” IEEE Trans. Microw. Theory Tech., vol. MTT-16, p. 361, June 1968.
[48] K. S. Ang and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180 hybrids,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1990–1995, Aug. 2002.
[49] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an anti-parallel diode pair,” IEEE Trans. Microw. Theory Tech., vol. MTT-23, no. 8, pp. 667–673, Aug. 1875.
[50] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
[51] Y. Tajima, T. Tsukii, R. Mozzi, E. Tong, L. Hanes, and B. Wrona, “GaAs monolithic wideband (2–18 GHz) variable attenuators,” in IEEE MTT-S Dig., 1982, vol. 1, pp. 479–481.
[52] Y. Imai, E. Sano, and K. Asai, “Design and performance of wideband GaAs MMIC’s for high-speed optical communication systems,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 2, pp. 185–190, Feb. 1992.
[53] S. Bellofiore, C. A. Balanis, J. Foufz, and A. S. Spanias, “Smart-antenna systems for mobile communication networks. Part 2: Beamforming and network throughput,” IEEE Antennas Propag. Mag., vol.44, no. 4, pp. 106–114, Aug. 2002.
[54] M. Chongcheawchamnan, S. Bunnjaweht, D. Kpogla, D. Lee, and I. D. Robertson, “Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 6, pp. 1642–1646, Jun. 2002.
[55] B.-H. Ku, and S. Hong, “6-bit CMOS Digital Attenuators with Low Phase Variations for X-Band Phased-Array Systems,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 7, pp. 1651–1663, July 2010.
[56] L. Boglione and R. Pavio, “Temperature and process insensitive circuit design of a voltage variable attenuator IC for cellular band applications,” IEEE Microw. Guided Wave Lett., vol. 10, no. 7, pp. 279–281, Jul. 2000.
[57] S. M. Daoud and P. N. Shastry, “A novel wideband MMIC voltage controlled attenuator with a bandpass filter topology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2576–2583, June 2006.
[58] L. Sjogren, D. Ingram, M. Biedenbender, R. Lai, B. Allen, and K. Hubbard, “A low phase-error 44-GHz HEMT attenuator,” IEEE Microw. Guided Wave Lett., vol. 8, no. 5, pp. 194–195, May 1998.
[59] Y. S. Dai, D. G. Fang, and Y. X Guo, “A novel UWB (0.045–50 GHz) digital/analog compatible MMIC variable attenuator with low insertion phase shift and large dynamic range,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 61–63, Jan. 2007.
[60] B. W. Min and G. M. Rebeiz, “A 10-50-GHz CMOS distributed step attenuator with low loss and low phase imbalance,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2547–2554, Nov. 2007.
[61] W. Kang, I. Chang, and M. Kang, “Reflection-type low-phase-shift attenuator,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 7, pp.1019–1021, Jul. 1998.
[62] S. Bulja, and A. Grebennikov, “Variable reflection type attenuator based on varactor diode,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp.3719–3727, Dec. 2012.
[63] S. Nam, A. E. Ashtiani, C. F. Oztek-Yerli, and I. D. Robertson, “Wideband reflection type MMIC attenuator with constant phase,” Electron. Lett., vol. 34, pp. 91–93, Jan. 1998.
[64] C. E. Saavedra, and Y. Zheng, “Ring-hybrid microwave voltage-variable attenuator using HFET transistors,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2430-2434, July 2005.
[65] J. C. Wu, T. Y. Chin, S. F. Chang, and C. C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[66] K. J. Koh and G. M. Rebeiz, “0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 2535–2546, Nov. 2007.
[67] T. Ohira, Y. Suzuki, H. Ogawa, and H. Kamitsuna, “Megalithic microwave signal processing for phased-array beam forming and steering,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp.2324–2332, Dec. 1997.
[68] M. Yu, R. J. Ward, D. H. Hovda, G. M. Hegazi, A. W. Hanson, and K. Linthicum, “The development of a high power SP4T RF switch in GaN HFET technology,” IEEE Microw. Wireless Compon. Lett. vol. 17, no. 12, pp.898–896, Dec. 2007.
[69] A. Wentzel, F. Schnieder, C. Meliani, and W. Heinrich, “A simplified switch-based GaN HEMT model for RF switch-mode amplifiers,” Proceedings of the 4th European Microwave Integrated Circuits Conference, pp.77–80, 28–29 Sep. 2009, Rome, Italy,
[70] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
[71] E. J. Wilkinson, “An N-way hybrid power divider”, IRE Trans. Microw. Theory Tech., vol. 8, pp. 116–118, Jan. 1960.
[72] H. Howe, Stripline Circuit Design. Dedham, MA: Artech House, 1974, pp. 97–159.
[73] K. Miyaguchi, M. Hieda, K. Nakahara, H. Kurusu, M. Nii, M. Kasahara, T. Takagi, and S. Urasaki, “An ultra-broad-band reflection-type phase shifter MMIC with series and parallel LC circuits,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2446–2452, Dec. 2001.
[74] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective type phase shifter MMIC for C-band using a lumped element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[75] B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, “Millimeter-wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560–562, Sep. 2009.
[76] C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp.1862–1868, Sep. 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw