進階搜尋


 
系統識別號 U0026-2008201416095600
論文名稱(中文) 金屬奈米柱與奈米洞管壁上的螺旋表面電漿子模態
論文名稱(英文) Spiral Surface plasmon Modes on metallic Nanorod and Nanohole
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 陳治民
研究生(英文) Chih-Min Chen
電子信箱 chihminchen@gmail.com
學號 L78961050
學位類別 博士
語文別 英文
論文頁數 70頁
口試委員 指導教授-藍永強
口試委員-溫添進
口試委員-劉文仁
口試委員-欒丕綱
口試委員-詹明哲
中文關鍵字 螺旋表面電漿子  快波區  慢波區  表面電漿子極化  表面電漿子波導模態 
英文關鍵字 Spiral Surface Plasmon  Fast wave region  Slow wave region  Surface Plasmon polarization  Plasmonic WaveGuide Mode 
學科別分類
中文摘要 在本文的研究中,均勻以及錐狀奈米銀柱的螺旋表面電漿子模態(SSP modes)具有穩定螺旋軌跡的特性,經由數值模擬計算後可驗證理論分析的結論。在半徑240奈米的均勻銀奈米柱表面,螺旋表面電漿子模態可藉由高階HE1模態與HE2模態的線性組合來激發。單股或是三股的螺旋表面電漿子模態可藉由控制這兩個構成模態的相對相位(或者相對旋轉方向)來產生。在錐狀奈米金屬柱上,螺旋表面電漿子模態的螺旋間距隨著半徑的縮減而變短,而沿著軸向前進方向上的場能密度起先逐步增加至最大值後卻滑落下來,場能最大值並未如預期集中在錐狀尖端。此外,奈米銀金屬孔洞內的螺旋表面電漿子模態的理論分析結果也同樣得到數值模擬結果的印證,其螺旋表面電漿子模態的激發方式也如奈米銀柱的激發方式一樣。在理論上,螺旋表面電漿子的軌跡源自於兩個構成場模的干涉拍頻,而奈米銀金屬孔洞內的單股或是三股螺旋表面電漿子模態也如同奈米銀柱的激發方式一樣,藉由控制這兩個構成模態的相對相位來產生。模擬結果也可見到奈米銀金屬孔洞內的螺旋表面電漿子的螺旋間距隨著孔洞半徑的縮減而變短,也隨著激發波長的減短而拉長螺旋表面電漿子模態的螺旋間距。
英文摘要 Spiral surface plasmon (SSP) modes on uniform and tapered silver nanorods are explored by performing both simulations and theoretical analyses. On a uniform nanorod with its radius equal to 240 nm, the SSP modes can be generated by linearly superposed higher-order HE1 and HE2 eigenmodes. Both the single- and triple-stranded SSP modes are produced by controlling the relative rotation direction of the two component modes. On a tapered nanorod, the spiral pitch of the SSP mode decreases with the reduction of nanorod radius. However, the field energy density along the nanorod axis increases to a maximum value and then falls. On the other hand, spiral surface plasmon (SSP) modes which spirally propagate inside a silver nanohole are explored by performing both simulations and theoretical analyses. The SSP modes are formed by linearly superposed HE1 and HE2 modes just the same method as the silver nanorods do. The spiral pattern originates in the beating of the two component modes. Both singlet- and triplet-strand SSP modes can also be generated by controlling the relative rotation direction of the two component modes as silver nanorods do. The spiral pitch of SSP modes decreases with the reduction of nanohole radius, but it is inversely related to the incident wavelength.
論文目次 論文合格證明
中文摘要……………………………………………………………………….I
Abstract………………………………………….…………………………….II
誌謝…………………………….…………...……………………………...….III
Contents…………………………….……….…………………………..…….IV
List of Figures...………………………….………………………….…….VI
Chapter 1 Introduction………………………………………………………….1
1-1 Reviews of Surface Plasmon Modes on metallic nanorods…………….3
1-2 Reviews of Surface Modes inside metallic nanoholes……………….9
1-3 Theoretical and Numerical method................................................…….....15
1-4 Application Reviews…....................................................................…...…24
1-5 References……………………………………………………...……...31
Chapter 2 Spiral surface plasmon modes on uniform and tapered metallic nanorods…….....................................................………36
2-1 Introduction………....……………………………………………………36
2-2 Theoretical Analysis for Propagation Properties of Surface Plasmon along Nanorods...........................................…………....................………37
2-3 Simulation Results and Discussion for Spiral Surface plasmon modes....41
2-4 Conclusions and Discussion………........................……….......….....47
2-5 References…………………………….……………………………...47
Chapter 3 Spiral Surface Modes inside Metallic Nanohole..............................…..51
3-1 Introduction……………………………………………………………51
3-2 Mode Analysis for Surface Waves inside Nanoholes……………....52
3-3 Simulation Verification for Fast Surface Waves Spiralling inside Nanoholes...........................................................................55
3-4 Conclusions and Discussions…………………........................………...59
3-5 References…………………………………………………………...59
Chapter 4 Mode Patterns in Subwavelength Plasmonic Holes………......………61
4-1 Introduction……………………………………………………………61
4-2 SPPs as the Fast Wave Region Surface Mode……………..…………62
4-3 SPPs as the Slow Wave Region Surface Mode……...……………...…65
4-4 Conclusions………......................……………………………………...68
4-5 References……….....…………………………………………………...69
Publication List.......................................................................................................70
參考文獻 [1.1] B. Prade and J.Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Tech. 12,6–18 (1994).
[1.2] B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant” Phys. Rev. B, vol. 44, pp. 13556, (1991).
[1.3] HongXing Yuan, B. X. Xu, and T. C. Chong, “Propagation properties of surface plasmon along metal nano-aperture and nano-wire”, Proc. SPIE 6282, Optical Data Storage 2006, 62821R (June 22, 2006).
[1.4] Tineke Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single subwavelength aperture”, Optics Letters, 24,1972(2001).
[1.5] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes”, Phys. Rev. B , 58,6779(1998).
[1.6] Tineke Thio, H J Lezec, T W Ebbesen, K M Pellerin, G D Lewen, A Nahata and R A Linke., “Giant optical transmission of sub-wavelength apertures: physics and applications”, Nanotechnology, 13, 429 (2002).
[1.7] William A. Challener, Terry W. McDaniel1, Christophe D. Mihalcea, Keith R. Mountfield, Kalman Pelhos and Ibrahim K. Sendur, “Light Delivery Techniques for Heat-Assisted Magnetic Recording”, Jpn. J. Appl. Phys. 42, pp. 981-988 (2003).
[1.8] Jean-Claude Weeber, Yvon Lacroute, and Alain Dereux, “Optical near-field distributions of surface plasmon waveguide modes”, Phys. Rev. B, 68, 115401 (2003).
[1.9] William L. Barnes, Alain Dereux & Thomas W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, 424, 824, (2003).
[1.10] J.G. Fleming, S.Y. Lin, I. EI-Kay, R. Biswas & K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap”, Nature, 417, 52 (2002).
[1.11] Dror Sarid, William Challener, “Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling and Applications”, Cambridge University Press (2010).
[1.12] M. A. Schmidt and P. St.J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires”, OPTICS EXPRESS. Vol. 16, No. 18, 13617,(2008).
[1.13] C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St.J. Russell, “Numerical study of guided modes in arrays of metallic nanowires”, Opt. Lett. 32, 1647-1649 (2007),.
[1.14] M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires”, Phys. Rev. B 77, 33417 (2008).
[1.15] Amnon Yariv, “Optical Electronics in Modern Communications”, 5th ed., Oxford University Press, New York, (1997).
[1.16] Hocheol Shin, Peter B. Catrysse, and Shanhui Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes” , Phys. Rev. B 72, 085436 (2005)
[1.17] Chih-Min Chen, Chih-Kai Young, Kuan-Ren Chen, and Yung-Chiang Lan, “Spiral surface plasmon modes on uniform and tapered metallic nanorods”, JOSA B, Vol. 30, Issue 9, pp. 2529-2534 (2013)
[1.18] Kohei Imura, Tetsuhiko Nagahara, and Hiromi Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods”, The Journal of Chemical Physics 122, 154701 (2005)
[1.19] Xing Zhu, briefing from http://wls.iphy.ac.cn/Chinese/1219/3/zhuxing.pdf , SPM training course, National Center for Nanoscience and Technology, (2007).
[1.20] D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems”, Phys. Rev. Lett. 90, 027402 (2003)
[1.21] M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides”, Phys. Rev. Lett. 93, 137404 (2004)
[1.22] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha,and H. A. Atwater, “Plasmonics—A Route to Nanoscale Optical Devices”, Adv. Mater. 13, 1501 (2001)
[1.23] S. A. Maier, P. G. Kik, and H. A. Atwater,“Optical pulse propagation in metal nanoparticle chain waveguides”, Phys. Rev. B 67, 205402 (2003).
[1.24] D. W. Pohl, W. Denk, and M. Lanz,“Optical stethoscopy: Image recording with resolution λ/20”, Appl. Phys. Lett. 44, 651 (1984)
[1.25] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale”, Science 251, 1468 (1991).
[1.26] Alain Dereux, Christian Girard and Jean-Claude Weeber, “Theoretical principles of near-field optical microscopies and spectroscopies”, J. Chem. Phys. 112(18), 7775 (2000).
[1.27] Gérard Colas des Francs, Christian Girard, Jean-Claude Weeber, Cédric Chicane, Thierry David, Alain Dereux, and David Peyrade, “Optical Analogy to Electronic Quantum Corrals”, Phys. Rev. Lett. 86, 4950 (2001)
[1.28] C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Cola des Francs, and C. Girard, “Imaging the Local Density of States of Optical Corrals”, Phys. Rev. Lett. 88, 097402 (2002).
[1.29] A. Dereux, Ch. Girard, C. Chicanne, G. Colas de Francs, T. David, E.Bourillot, Y. Lacroute, and J. C. Weeber, “Subwavelength mapping of surface photonic states”, Nanotechnology 14, 935 (2003)
[1.30] K. Imura, T. Nagahara, and H. Okamoto, “Imaging of Surface Plasmon and Ultrafast Dynamics in Gold Nanorods by Near-Field Microscopy”, J. Phys. Chem. B 108, 16344 (2004)
[1.31] K. Imura, T. Nagahara, and H. Okamoto, “Plasmon Mode Imaging of Single Gold Nanorods”, J. Am. Chem. Soc. 126, 12730 (2004).
[1.32] Anshup, J. Sai Venkataraman, Chandramouli Subramaniam,R. Rajeev Kumar, Suma Priya, T. R. Santhosh Kumar, R. V. Omkumar, Annie John, and T. Pradeep, “Growth of Gold Nanoparticles in Human Cells”, Langmuir, 21, 11562, (2005)
[1.33] S.P. Zhang, H. Wei, K. Bao, U. Hakanson, N.J. Halas, P. Nordlander, and H.X. Xu , “Chiral surface plasmon polaritons on metallic nanowires”, Phys. Rev. Lett. 107, 096801 (2011)
[1.34] F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García and B. Gómez-Lor, “Very Large Photoconduction Enhancement upon Self Assembly of a New Triindole Derivative in Solution-Processed Films”, Adv. Funct. Mater. 21, 738 – 745 (2011).
[1.35] G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” Appl. Phys. Lett. 94, 243304 (2009).
[1.36] C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal and X. Zhang, “Optical Mobius Symmetry in Metamaterials”, Phys. Rev. Lett. 105, 235501 (2010).
[2.1] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields”, Nature Nanotech. 5, 783 (2010).
[2.2] Y. Tang and A. E. Cohen, “Optical Chirality and Its Interaction with Matter”, Phys Rev. Lett. 104, 163901 (2010).
[2.3] Y. Tang and A. E. Cohen, “Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light”, Science 332, 333 (2011).
[2.4] Y. Gorodetski, A. Niv, V. Kleiner and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures”, Phys. Rev. Lett. 101, 043903 (2008).
[2.5] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. Freymann, S. Linden and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer”, Science 325, 1513 (2009).
[2.6] Z. Fan and A. O. Govorov, “Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies”, Nano Lett. 10, 2580 (2010).
[2.7] M. Liu, T. Zentgraf, Y. Liu, G. Bartal and X. Zhang, “Light-driven nanoscale plasmonic motors”, Nature Nanotech. 5, 570 (2010).
[2.8] S. A. Maier, Plasmonics: Fundamentals and Applications, Chap. 8 (Springer, New York, 2007).
[2.9] D. Courjon and C. Bainier, “Near field microscopy and near field optics”, Rep. Prog. Phys. 57, 989 (1994).
[2.10] D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College Press, London, 2003).
[2.11] C. A. Pfeiffer, E. N. Economou and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: Surface plasmons”, Phys. Rev. B 10, 3038 (1974).
[2.12] B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Technol. 12, 6 (1994).
[2.13] S. J. Al-Bader and M. Imtaar , “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells”, IEEE J. Quantum Electron. 28, 525 (1992).
[2.14] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter”, Opt. Lett. 22, 475 (1997).
[2.15] M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires”, Opt. Express 16, 13617 (2008).
[2.16] S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander and H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires”, Phys. Rev. Lett. 107, 096801 (2011).
[2.17] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Comm. 181, 687 (2010).
[2.18] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals”, Phys. Rev. B 6, 4370 (1972).
[2.19] Y. C. Lan, C. J. Chang and P. H. Lee, “Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation”, Opt. Lett. 34, 25 (2009).
[2.20] A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews and S. A. Maier, “Spoof surface plasmon polariton modes propagating along periodically corrugated wires”, IEEE J. Sel. Top. Quantum Electron. 14, 1515 (2008).
[2.21] F. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García and B. Gómez-Lor, r, “Very large photoconduction enhancement upon self-assembly of a new triindole derivative in solution-processed films,” Adv. Funct. Mater. 21, 738 – 745 (2011).
[2.22] G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses”, Appl. Phys. Lett. 94, 243304 (2009).
[2.23] C. W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal and X. Zhang , “Optical Möbius symmetry in metamaterials”, Phys. Rev. Lett. 105, 235501 (2010).
[2.24] H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks”, Nano Lett. 11, 471–475 (2011).
[2.25] H. Wei1, Z. Wang1, X. Tian, M. Käll and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks”, Nat. Comm. 2, 387 (2011).
[3.1] M. A. Schmidt and P. St. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires”, Opt. Express 16, 13617-13623 (2008).
[3.2] S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander and H. Xu, “Chiral Surface Plasmon Polaritons on Metallic Nanowires”, Phys. Rev. Lett. 107, 096801 (2011)
[3.3] H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes”, Phys. Rev. B 72, 085436 (2005)
[3.4] L. Novotny and Ch. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E 50, 4094 (1994).
[3.5] H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks”, Nano Lett. 11, 471 (2011).
[4.1] B. Prade and J.Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Tech. 12,6–18 (1994).
[4.2] Dror Sarid, William Challener, “Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling and Applications”, Cambridge University Press (2010).
[4.3] H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes”, Phys. Rev. B 72, 085436 (2005).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw