進階搜尋


下載電子全文  
系統識別號 U0026-2008201413411000
論文名稱(中文) 以軟式層壓法備製反式有機太陽能電池
論文名稱(英文) Fabrication of the Inverted Type Organic Solar Cells via Soft Contact Lamination Method
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩士在職專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 102
學期 2
出版年 103
研究生(中文) 董勁吾
研究生(英文) Jing-Wu Dong
學號 p47001139
學位類別 碩士
語文別 英文
論文頁數 57頁
口試委員 口試委員-陳昭宇
口試委員-許聯崇
指導教授-高騏
中文關鍵字 軟式層壓法  反置型有機太陽能電池  串聯  光捕捉技術 
英文關鍵字 soft contact lamination method  inverted type organic solar cell  series circuit  light trapping technique 
學科別分類
中文摘要 本研究以提升產出速度(throughput rate)為出發點,採軟式層壓法取代一般方法來備製反式有機太陽能電池。一般備製太陽能電池之方法係將材料由下至上,層層生長於一片基板之上;而軟式層壓法則將材料分別生長於上、下兩片基板,再予以貼合。由於上、下基板之製程可同時進行,故可將生產流程一分為二,進而縮短產製時間。以本實驗室之標準製作流程為例,一般方法產製一組八片太陽能電池基板需耗時450分鐘,而軟式層壓法僅需280分鐘。以軟式層壓法製做之太陽能電池,其光電轉換效率達2.41%,與一般製程電池之效率值2.54%相去不遠。
此外,我們運用軟式層壓法可有效地將反式有機太陽能電池串聯在一起,串聯後短路電流維持穩定而開路電壓與串接之電池數呈倍數成長。我們亦嘗式運用軟式層壓法於電極層上建立抗反射結構,以增加太陽能電池的光補捉能力,如此光電轉換效率可提升至2.65%。
英文摘要 The initial motivation of this study is to increase the throughput rate for fabricating the inverted type organic solar cells (OSCs) by applying the soft contact lamination (SCL) method in place of the ordinary method. The ordinary method means to deposit the OSC materials layer by layer in the bottom-up sequence on one panel; on the other hand, the SCL method is to deposit the OSC materials individually on the top and the bottom plates before laminating them together. The treatments on the top and the bottom plates can be carried out in the mean time, hence the work flow is divided for reducing the throughput time. Taking the standard fabrication procedure of our laboratory for example, it takes about 450 minutes to fabricate eight pieces of OSC devices in one throughput by using ordinary method, but only 280 minutes by using SCL method. The power converting efficiency (PCE) of the SCL-fabricated OSC reaches 2.41%, which is comparable to the PCE of 2.54% of the ordinary-fabricated OSC.
Moreover, we applied the SCL method to connect the inverted OSCs in a series circuit effectively, the short circuit current maintains stable and the open circuit voltage increases linearly with the number of OSCs connected. We also built an anti-reflection structure on the electrode to enhance the light trapping ability of our SCL-fabricated OSC, which increased the PCE to 2.65%.
論文目次 Table of contents
Certification
中文摘要
Abstract
致謝
Table of contents.........................................Ⅰ
List of Tables...........................................Ⅳ
List of Figures...........................................Ⅴ
Chapter 1 Preface and Motivations.........................1
1.1 Preface...............................................1
1.2 Motivations...........................................2
Chapter 2 Theory and Literature Reviews...................3
2.1 A brief history of the organic solar cells............3
2.2 The characteristics of solar cells....................5
2.2.1 The Current-Voltage characteristics and the equiva- lent circuit..............................................5
2.2.2 The standard measurement condition..................7
2.3 Theory of the organic solar cells.....................8
2.3.1 Operation principles................................8
2.3.2 Different structures of the active layers...........9
2.3.3 The conventional and the inverted architectures....10
2.3.4 The strategies to increase the PCE of an OSC.......12
2.4 Literature Reviews of the lamination methods.........12
Chapter 3 Experimental Setups............................15
3.1 Materials preparation................................15
3.1.1 Indium tin oxide (ITO).............................15
3.1.2 Zinc oxide (ZnO)...................................16
3.1.3 Active layer (P3HT:PCBM)...........................17
3.1.4 PEDOT:PSS AI4083...................................17
3.1.5 Polydimethylsiloxane (PDMS)........................17
3.2 Experimental procedures..............................18
3.2.1 The inverted OSCs fabricated via ordinary method...18
3.2.2 The inverted OSCs fabricated via SCL method........20
3.2.3 The inverted OSCs with grating-structured Ag electrodes...............................................21
3.2.4 Connecting the inverted OSCs in series circuit via SCL method...................................................22
3.3 Measurement..........................................23
3.3.1 The measurement of the PCEs........................23
3.3.2 The measurement of the reflection rate.............23
3.3.2 The measurement of the external quantum efficiency .........................................................23
Chapter 4.Result and Disscussion........................25
4.1 The performance of the inverted OSCs fabricated via SCL method...................................................25
4.1.1 The effect of annealing condition on the PDMS/Ag top plates...................................................25
4.1.2 The comparison between the ordinary- and SCL- fabricated OSCs..........................................26
4.1.3 The fabricating time...............................27
4.2 The performance of the OSCs with grating-structured Ag electrodes...............................................27
4.2.1 The Current-Voltage characteristics................27
4.2.2 The reflection rate..............................28
4.3 The performance of the series-connected SCL OSCs.....30
Chapter 5 Conclusion.....................................31
Refrence.................................................33
參考文獻 [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, ”Solar cell efficiency tables (version 43)," Prog.Photovolt:Res.Appl., 22, 1-9 (2014)
[2] Gang Li, Rui Zhu and Yang Yang, "Polymer solar cells," Nat. Photonics ,6,153-161 (2012)
[3] S. K. HAU, H.-L. YIP, A. K.Y. JEN, ”A Review on the Development of the Inverted Polymer Solar Cell Architecture," Polym. Rev., 50, 474-510 (2010)
[4] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure," Nat. Photonics, 6, 593 ( 2012)
[5] D. M. Chapin, "A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., 25, 676 (1954)
[6] D. Kearns & M. Calvin, "Photovoltaic effect and photoconductivity in laminated organic systems," J. Chem. Phys., 29,950-951 (1958)
[7] K. Matsumura, H. Ohigashi, A. Takahashi, and J. Tsukamoto, "A Schottky-barrier type solar-cell using polyacetylene," Jpn. J. Appl. Phys., 20,127-129 (1981)
[8] B.R. Weinberger, M. Akhtar, S.C. Gau, "Polyacetylene photovoltaic devices," Synthetic Met., 4, 187-197 (1982)
[9] C. W. Tang, "Multilayer organic photovoltaic elements," US patent 4, 164,431 (1979)
[10] C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phy. Lett., 48, 183-185 (1986)
[11] M. Hiramoto, M. Suezaki, M. Yokoyama, ”Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell,” Chem. Lett. 19,327-330(1990)
[12] N. S. Sariciftci1, L. Smilowitz1, A. J. Heeger, F. Wudl, "Photoinduced electron-transfer from a conducting polymer to Buckminsterfullerene," Science 258, 1474–1476 (1992).
[13] J. C. Hummelen , B. W. Knight , F. LePeq , F. Wudl , J. Yao , C. L. Wilkins.“Preparation and Characterization of Fulleroid and Methanofullerene Derivatives," J. Org. Chem. 60, 532-538 (1995)
[14] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, " Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor– acceptor heterojunctions," Science 270, 1789–1791 (1995)
[15] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions," Science ,270,1789-1791(1995)
[16] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nat. Materials, 4, 864 - 868 (2005)
[17] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,”High Photovoltaic Performance of a Low-Bandgap Polymer," Macromolecules, 40,1981-1986 (2007)
[18] Y.Liang,Y. Wu,D. Feng,S.T. Tsai,H.J. Son,G. Li,and L. Yu,”Development of New Semiconducting Polymers for High Performance Solar Cells," J. AM. CHEM. SOC., 131, 56-57(2009).
[19] B. P. Rand and D. P. Burk, " Offset energies at organic semiconductor hetero- junctions and their influence on the open-circuit voltage of thin-film solar cells," Phys Rev. B, 75,115327(2007).
[20] T. Ameri, G. Dennler, C. Waldauf, P. Denk, and K. Forberich, "Realization, characterization, and optical modeling of inverted bulkheterojunction organic solar cells," J. Appl. Phys., 103, 084506 (2008).
[21] S. K. Hau, K. M. O’Malley, Y.-J. Cheng, H.-L. Yip, H. Ma, and A. K.-Y. Jen, " Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells," J. Select. Topics Quantum Electron., 16-6, 1665-1675 (2010).
[22] Y. M. Nam, J. Huh, and W. H. Jo, "Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells," sol energy mater. sol. cells, 94, 1118-1124 (2010).
[23] S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, "Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography," Adv. Funct. Mater., 18, 3956-3963 (2008).
[24] D.-H. Ko, J.n R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, "Light-trapping nano-structures in organic photovoltaic cells," J. Mater. Chem., 21, 16293 (2011).
[25] D .J. Kang, H. Kang, C. Cho, K.-H. Kim, S. Jeong, J.-Y. Lee, and B. J. Kim, " Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles," Nanoscale, 5, 1858-1863 (2013).
[26] J. Huang, G. Li, and Y. Yang, "A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process", Adv. Mater., 20, 415–419 (2008).
[27] Y. Lu, C. Alexander, Z. Xiao, Y. Yuan, R. Zhang and J. Huang, “Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability," Nanotechnology, 23,344007(6pp) (2012)
[28] M. Nakamura, C. Yang, E. Zhou, K. Tajima, K. Hashimoto, “Polymer Bulk Heterojunction Photovoltaic Devices with Multilayer Structures Prepared by Thermal Lamination,” Appl. Mater. Interfaces., 1 ,2703-2706 ( 2009)
[29] M. Granström, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson & R. H. Friend, " Laminated fabrication of polymeric photovoltaic diodes," Nature, 395, 257-260 (1998).
[30] Y. Yuan, Y. Bi, and J. Huang, " Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization," Appl. Phys. Lett., 98, 063306 (2011).
[31] Y. Lu, C. Alexander, Z. Xiao, Y. Yuan, R. Zhang and J. Huang, " Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability," Nanotechnology, 23, 344007 (2012).
[32] M. Nakamura, C. Yang, K. Tajima, K. Hashimoto, “High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination," sol energy mater. sol. cells, 93,1681-1684 (2009)
[33] J. Kim, D.-Y. Khang, J.-H. Kim, and H. H. Lee, " The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells," Appl. Phy. Lett., 92, 133307 (2008).
[34] J. B. Kim, S. Lee, M. F. Toney, Z. Chen, A. Facchetti, Y. S. Kim and Y. L. Loo,”Reversible Soft-Contact Lamination and Delamination for Non-Invasive Fabrication and Characterization of Bulk-Heterojunction and Bilayer Organic Solar Cells," Chem. Mater., 22, 4931-4938 (2010).
[35] 陳煌騰,軟微影壓印反置型有機太陽能電池之特性研究,國立成功大學航空太空工程研究所 (101年7月)。
[36] 莊智閎,以低溫製程製備可撓式反置型有機太陽能電池之研究,國立成功大學航空太空工程研究所 (102年7月)。
[37] A. Oláha, H. Hillborga, G.J. Vancso, " Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification," Appl. Surf. Sci., 239, 410-423 (2005).
[38] S. Yoo, W. J. Potscavage, B. Domercq, J. Kim, J. Holt, and B. Kippelen, "Integrated organic photovoltaic modules with a scalable voltage output," Appl. Phy. Lett., 89, 233516 (2006).
[39] A. Aoki, M. Naruse, and T. Abe, " Series Circuit of Organic Thin-Film Solar Cells for Conversion of Water into Hydrogen," CHEM. PHYS. CHEM., 14, 2317-2320 (2013).
[40] J. Lee, H. Back, J. Kong, D.-W. Park, K. Lee, " New series connection method for bulk-heterojunction polymer solar cell modules," sol energy mater. sol. cells, 98, 208-211 (2012).
[41] M. Niggemann, B. Zimmermann, J. Haschke, M. Glatthaar, A. Gombert, " Organic solar cell modules for specific applications -From energy autonomous systems to large area photovoltaics," Thin Solid Films, 516, 7181–7187 (2008).
[42] P¨ Kopola, T. Aernouts, R. Sliz, S. Guillerez, M. Ylikunnari, D. Cheyns, M. V¨alim¨aki, M. Tuomikoski, J. Hast, G. Jabbour, R. Myllyl¨, A. Maaninen, " Gravure printed flexible organic photovoltaic modules," sol energy mater. sol. cells, 95, 1344-1347 (2011).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw