進階搜尋


下載電子全文  
系統識別號 U0026-2008201410312500
論文名稱(中文) 發展應用於藥物輸送和口腔癌治療的多功能奈米複合材料
論文名稱(英文) The development of multifunctional nanocomplexes for drug delivery and oral cancer therapy
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 2
出版年 103
研究生(中文) 蔡宸豪
研究生(英文) Chen-Hao Tsai
學號 T46011012
學位類別 碩士
語文別 英文
論文頁數 45頁
口試委員 口試委員-謝達斌
指導教授-黃振勳
共同指導教授-鄭豐裕
中文關鍵字 超順磁性氧化鐵奈米粒子  海藻膠  碳二亞胺反應  藥物輸送系統 
英文關鍵字 superparamagnetic iron oxide nanoparticles  alginate  carbodiimide reaction  drug delivery system 
學科別分類
中文摘要 口腔癌在台灣的發生率逐漸上升,同時在十大癌症死亡率排名第五位。有鑑於此,針對口腔癌發展出有效的治療方法便成為一個重要的課題。本研究主要是利用超順磁性氧化鐵奈米粒子結合海藻膠來開發出一個可應用於口腔癌治療的藥物載體。海藻膠與超順磁性氧化鐵奈米粒子結合所形成之奈米複合材料(Fe3O4/alginate nanoparticles)的製備方式是先混合氨基型四氧化三鐵奈米粒子以及海藻膠,再以碳二亞胺反應幫助胜肽鍵形成。Fe3O4/alginate nanoparticles的水合直徑、表面電位和表面修飾則分別以動態光散射儀和傅立葉轉換紅外線光譜進行分析。Doxorubicin (DOX)的裝載是將DOX與Fe3O4/alginate nanoparticles先行混合後,再將混合液加入氯化鈣溶液中,形成有裝載DOX的Fe3O4@Ca-alginate nanoparticles。藥物包裹率以及裝載量的計算是以螢光測定結果計算而得;而藥物的釋放率則是將裝載DOX的Fe3O4@Ca-alginate nanoparticles置於不同的溶液環境中,每24小時監測一次,連續監測7天。結果顯示Fe3O4/alginate nanoparticles的水合直徑為76.5±19.2奈米,表面電位為-39.0±0.3毫伏特,從傅立葉轉換紅外線光譜的結果亦證實了海藻膠成功結合到四氧化三鐵奈米粒子的表面。當DOX與鐵的重量比為8:1時,藥物的包裹率和裝載量會達到最高。藥物釋放曲線顯示裝載DOX的Fe3O4@Ca-alginate nanoparticles在細胞質模擬緩衝溶液的環境中有最高的釋放率。細胞毒性測試結果顯示裝載DOX的Fe3O4@Ca-alginate nanoparticles其細胞毒性與純藥物相當。綜合上述的結果,Fe3O4@Ca-alginate nanoparticles可做為藥物輸送系統,期望在未來可以利用這個系統提高腫瘤治療的效率,同時可降低藥物的副作用。
英文摘要 The incidence of oral cancer increases gradually and oral cancer is the fifth leading cause of cancer mortality in Taiwan. Thus, it is important to develop an effectively therapeutic approach for oral cancer. The aim of this study is to develop a drug delivery system made of superparamagnetic iron oxide nanoparticles (SPIONs) covalently linked with alginate for oral cancer therapy. Alginate-conjugated SPIONs (Fe3O4/alginate nanoparticles) is prepared by mixing NH3+-exposed magnetite (Fe3O4) nanoparticles and alginate, followed by carbodiimide reaction. The hydrodynamic diameter, zeta potential and surface modification of Fe3O4/alginate nanoparticles are characterized by dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FT-IR). Doxorubicin (DOX) is encapsulated into the drug delivery system by mixing DOX and Fe3O4/alginate nanoparticles solution followed by addition of the mixture into CaCl2 aqueous solution (DOX-loaded Fe3O4@Ca-alginate nanoparticles). The encapsulation efficiency and loading capacity are determined by fluorescence spectrometer with excitation wavelength of 485 nm and emission wavelength of 590 nm; release profiles of DOX-loaded Fe3O4@Ca-alginate nanoparticles in different medium are monitored from 24 hr to 7 days. The hydrodynamic diameter and zeta potential of Fe3O4/alginate nanoparticles are 76.5±19.2 nm and -39.0±0.3 mV, respectively, and the FT-IR spectra of SPION-alginate reveals that alginates conjugate successfully to Fe3O4 nanoparticles. The encapsulation efficiency and loading capacity exhibit maximum values when the weight ratio of DOX to Fe is 8:1. The release profile indicates that the cumulative DOX release percentage is highest at the cytoplasm mimicking buffer. The in vitro cytotoxicity of DOX-loaded Fe3O4@Ca-alginate nanoparticles shows similar degree of cytotoxicity to that of free DOX. Our results suggest that Fe3O4@Ca-alginate nanoparticles can serve as a drug nanocarrier, and this system has a great potential to improve therapeutic efficiency and minimize side effects of anticancer drugs in the future.
論文目次 中文摘要 I
Abstract II
Acknowledgements IV
Contents V
Figure Contents VIII
Abbreviations IX
1. Introduction 1
1-1 Drug delivery system 1
1-2 Magnetic nanoparticle 2
1-3 Magnetic behaviors of SPION 3
1-4 Synthesis of SPIONs 5
1-5 SPIONs coated by alginate 7
1-6 Alginate 8
1-7 Preparation of alginate hydrogel 9
1-7.1 Ionotropic gelation of alginate 9
1-7.2 Alginate acid gel 10
1-8 Study purpose 10
2. Materials and Methods 12
2-1 Materials 12
2-1.1 Synthesis of Fe3O4 and Fe3O4/alginate nanoparticles 12
2-1.2 Cell culture 12
2-1.3 Drug release experiment 13
2-1.4 MTT assay 13
2-2. Methods 13
2-2.1 Preparation of Fe3O4 nanoparticles 13
2-2.2 Preparation of Fe3O4/alginate nanoparticles 14
2-2.3 Ionic crosslinking of Fe3O4/alginate nanoparticles 14
2-2.4 Morphology and zeta potential of Fe3O4 nanoparticles 15
2-2.5 Morphology, hydrodynamic diameter and zeta potential of Fe3O4/alginate nanoparticles and Fe3O4@Ca-alginate nanoparticles 15
2-2.6 Fourier transform infrared spectroscopy (FT-IR) analysis of Fe3O4 nanoparticles, alginate and Fe3O4/alginate nanoparticles 16
2-2.7 Cell culture of human oral squamous cell carcinoma (OSCC) cell line, normal cell line and control normal keratinocyte 16
2-2.8 In vitro cytotoxicity studies of Fe3O4/alginate nanoparticles and Fe3O4@Ca-alginate nanoparticles 17
2-2.9 Preparation of DOX-loaded Fe3O4@Ca-alginate nanoparticles 17
2-2.10 Doxorubicin loading content and encapsulation efficiency 17
2-2.11 In vitro release profile of DOX-loaded Fe3O4@Ca-alginate nanoparticles 18
2-2.12 In vitro cytotoxicity evaluation of DOX-loaded Fe3O4@Ca-alginate nanoparticles 18
3. Results 19
3-1 Characterization of Fe3O4 nanoparticles 19
3-2 Characterization of Fe3O4/alginate nanoparticles and Fe3O4@Ca-alginate nanoparticles 19
3-3 FT-IR analysis of Fe3O4 nanoparticles, alginates and Fe3O4/alginate nanoparticles 20
3-4 In vitro cytotoxicity evaluation of Fe3O4/alginate nanoparticles and Fe3O4@Ca-alginate nanoparticles 20
3-5 Doxorubicin loading content and encapsulation efficiency 20
3-6 In vitro release profiles of DOX-loaded Fe3O4@Ca-alginate nanoparticles 21
3-7 In vitro cytotoxicity evaluation of DOX-loaded Fe3O4@Ca-alginate nanoparticles 21
4. Discussion 23
5. Conclusion 31
6. References 32
7. Figures and Legends 38

參考文獻 1. J. Folkman, D. M. Long, Jr., and R. Rosenbaum, "Silicone rubber: a new diffusion property useful for general anesthesia," Science 154 (3745), 148-149 (1966).
2. A. S. Hoffman, "The origins and evolution of "controlled" drug delivery systems," Journal of controlled release : official journal of the Controlled Release Society 132 (3), 153-163 (2008).
3. C. J. Kearney and D. J. Mooney, "Macroscale delivery systems for molecular and cellular payloads," Nature materials 12 (11), 1004-1017 (2013).
4. A. S. Teja and P. Y. Koh, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles," Progress in Crystal Growth and Characterization of Materials 55 (1–2), 22-45 (2009).
5. E. V. Groman, J. C. Bouchard, C. P. Reinhardt, and D. E. Vaccaro, "Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents," Bioconjugate chemistry 18 (6), 1763-1771 (2007).
6. C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A. S. Lubbe, "Locoregional cancer treatment with magnetic drug targeting," Cancer research 60 (23), 6641-6648 (2000).
7. D. D. Stark, R. Weissleder, G. Elizondo, P. F. Hahn, S. Saini, L. E. Todd, J. Wittenberg, and J. T. Ferrucci, "Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver," Radiology 168 (2), 297-301 (1988).
8. P. Moroz, S. K. Jones, and B. N. Gray, "Magnetically mediated hyperthermia: current status and future directions," International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 18 (4), 267-284 (2002).
9. A. H. Lu, E. L. Salabas, and F. Schuth, "Magnetic nanoparticles: synthesis, protection, functionalization, and application," Angew Chem Int Ed Engl 46 (8), 1222-1244 (2007).
10. D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed, "Protective coating of superparamagnetic iron oxide nanoparticles, " Chemistry of Materials 15 (8), 1617-1627 (2003).
11. A. Petri-Fink, M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann, "Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells," Biomaterials 26 (15), 2685-2694 (2005).
12. S. Palmacci and L. Josephson, United Satates Patent 5262176 (1993).
13. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles," Journal of the American Chemical Society 126 (1), 273-279 (2004).
14. S. Sun, and H. Zeng, "Size-controlled synthesis of magnetite nanoparticles," Journal of the American Chemical Society 124 (28), 8204-8205 (2002).
15. I. Capek, "Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions," Advances in colloid and interface science 110 (1-2), 49-74 (2004).
16. A. B. Chin and Iskandar Idris Yaacob, "Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure," Journal of Materials Processing Technology 191 (1-3), 235-237 (2006).
17. X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437 (7055), 121-124 (2005).
18. S. Laurent, A. A. Saei, S. Behzadi, A. Panahifar, and M. Mahmoudi, "Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges," Expert opinion on drug delivery, 1-22 (2014).
19. H. L. Ma, X. R. Qi, Y. Maitani, and T. Nagai, "Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate," International journal of pharmaceutics 333 (1-2), 177-186 (2007).
20. A. Haug, B. Larsen, and O. Smidsord, "A study of the constitution of alginic acid by partial acid hydrolysis," Acta Chemica Scandinavica 20 , 183-190 (1966).
21. A. Haug, and O. Smidsord, "Properties of poly(1,4-hexuronates) in the gel state. II. Comparison of gels of different chemical composition," Acta Chemica Scandinavica 26 , 79-88 (1972).
22. Yu. S. Khotimchenko, V. V. Kovalev, O. V. Savchenko, and O. A. Ziganshina "Physical–chemical properties, physiological activity, and usage of alginates, the polysaccharides of brown algae," Russian Journal of Marine Biology 27, Suppl. 1, S53-S64 (2001).
23. S. Thomas, "Alginate dressings in surgery and wound management--Part 1," Journal of wound care 9 (2), 56-60 (2000).
24. M. Ashley, A. McCullagh, and C. Sweet, "Making a good impression: (a 'how to' paper on dental alginate)," Dental update 32 (3), 169-170, 172, 174-165 (2005).
25. E. Trouche, S. Girod Fullana, C. Mias, C. Ceccaldi, F. Tortosa, M. H. Seguelas, D. Calise, A. Parini, D. Cussac, and B. Sallerin, "Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ," Cell transplantation 19 (12), 1623-1633 (2010).
26. S. Brule, M. Levy, C. Wilhelm, D. Letourneur, F. Gazeau, C. Menager, and C. Le Visage, "Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy," Advanced materials (Deerfield Beach, Fla.) 23 (6), 787-790 (2011).
27. S. N. Pawar and K. J. Edgar, "Alginate derivatization: a review of chemistry, properties and applications," Biomaterials 33 (11), 3279-3305 (2012).
28. Y. A. Morch, I. Donati, B. L. Strand, and G. Skjak-Braek, "Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads," Biomacromolecules 7 (5), 1471-1480 (2006).
29. G. Skjak-Brak, H. Grasdalen, and O. Smidsrod, " lnhomogeneous polysaccharide ionic gels," Carbohydrate Polymers 10 (1), 31-54 (1989)
30. K. I. Draget, G. Skjak-Brak, and O. Smidsrod, " Alginic acid gels: the effect of alginate chemical composition and molecular weight," Carbohydrate Polymers 25 (1), 31-38 (1994)
31. D. B. Shieh, F. Y. Cheng, C. H. Su, C. S. Yeh, M. T. Wu, Y. N. Wu, C. Y. Tsai, C. L. Wu, D. H. Chen, and C. H. Chou, "Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents," Biomaterials 26 (34), 7183-7191 (2005).
32. F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, and D. B. Shieh, "Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications," Biomaterials 26 (7), 729-738 (2005).
33. E. Kroll and F. M. Winnik, "In situ preparation of nanocrystalline γ-Fe2O3 in iron(II) cross-linked alginate gels, " Chemistry of Materials 8 (8), 1594-1596 (1996).
34. F. Llanes, D. H. Ryan, and R. H. Marchessault, "Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix," International journal of biological macromolecules 27 (1), 35-40 (2000).
35. F. Shen, C. Poncet-Legrand, S. Somers, A. Slade, C. Yip, A. M. Duft, F. M. Winnik, and P. L. Chang, "Properties of a novel magnetized alginate for magnetic resonance imaging," Biotechnology and bioengineering 83 (3), 282-292 (2003).
36. J. P. Paques, E. van der Linden, C. J. van Rijn, and L. M. Sagis, "Preparation methods of alginate nanoparticles," Advances in colloid and interface science 209, 163-171 (2014).
37. M. Rajaonarivony, C. Vauthier, G. Couarraze, F. Puisieux, and P. Couvreur, "Development of a new drug carrier made from alginate," Journal of pharmaceutical sciences 82 (9), 912-917 (1993).
38. C. Y. Yu, H. Wei, Q. Zhang, X. Z. Zhang, S. X. Cheng, and R. X. Zhuo, "Effect of ions on the aggregation behavior of natural polymer alginate," The journal of physical chemistry. B 113 (45), 14839-14843 (2009).
39. Y. Cheng, S. Yu, X. Zhen, X. Wang, W. Wu, and X. Jiang, "Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system," ACS applied materials & interfaces 4 (10), 5325-5332 (2012).
40. T. Boontheekul, H. J. Kong, and D. J. Mooney, "Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution," Biomaterials 26 (15), 2455-2465 (2005).
41. S. Wee, and W. R. Gombotz, "Protein release from alginate matrices," Advanced drug delivery reviews 31 (3), 267-285 (1998).
42. T. E. Timell, "The acid hydrolysis of glycosides: I. General conditions and the effect of the nature of the aglycone" Canadian Journal of Chemistry 42 (6), 1456-1472 (1964).
43. H. Guo, Q. Lai, W. Wang, Y. Wu, C. Zhang, Y. Liu, and Z. Yuan, "Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy," International journal of pharmaceutics 451 (1-2), 1-11 (2013).
44. D. P. Maya , and B. P. Havazelet, "A quantitative analysis of alginate swelling," Carbohydrate Polymers 79 (4), 1020-1027 (2010).
45. T. Andersen, B. L. Strand, K. Formo, E. Alsberg and B. E. Christensen, " Carbohydrate Chemistry: Volume 37," Royal Society of Chemistry, UK, 227-258 (2012)
46. H. K. Holme, L. Davidsen, A. Kristiansen, and O. Smidsrød, "Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution," Carbohydrate Polymers 73 (4), 656-664 (2008).
47. N. Singh, G. J. Jenkins, R. Asadi, and S. H. Doak, "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)," Nano reviews 1 (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw