進階搜尋


下載電子全文  
系統識別號 U0026-2008201319042700
論文名稱(中文) 紅素氧還蛋白在陰道鞭毛蟲抗環境壓上所扮演的角色
論文名稱(英文) Role of rubrerythrin in the environmental stress response of Trichomonas vaginalis
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 101
學期 2
出版年 102
研究生(中文) 周炯呈
研究生(英文) Chung-Chen Chou
學號 s46004137
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-辛致煒
口試委員-林威辰
召集委員-楊倍昌
口試委員-鄧致剛
中文關鍵字 陰道鞭毛蟲  逆境  紅素氧還蛋白 
英文關鍵字 Trichomonas vaginalis  Environmental stress  Rubrerythrin 
學科別分類
中文摘要 陰道鞭毛蟲 (Trichomonas vaginalis) 是厭氧性的單細胞原蟲,寄生在人類的泌尿生殖道。其生活史中可能經歷的生活環境變異相當巨大,像是當其寄生於女性的陰道時,經期前後的環境差異,亦或是當蟲體隨分泌物移動至外界時,細胞生存的環境變因像是溫度、酸鹼值或是細胞可利用的養分等等,都截然不同。生物體的細胞,相信原蟲亦然,在生存逆境的條件下,為了存活勢必得關閉某些平常處於表達狀態的基因,轉而啟動某些與逆境應對的基因,進而開啟或提高逆境蛋白質 (stress proteins) 的表現。本研究利用酵素免疫分析法針對不同培養狀態的陰道鞭毛蟲進行分析,結果顯示蟲體細胞內的紅素氧還蛋白 (rubrerythrin) 會被許多逆境壓力(例如:葡萄糖、鐵離子、溶液酸鹼值…等)誘導提高其表現量,由此可知紅素氧還蛋白應屬於陰道鞭毛蟲的逆境蛋白質之一。更進一步針對各種外界環境壓力程度進行分析之後,我們發現培養液中葡萄糖與鐵離子的濃度對紅素氧還蛋白的表現量具有正向調控的關係,並且這兩項環境變因還具有壓力累加而產生表現量累加的加乘效果,相信本研究結果可作為陰道鞭毛蟲強大環境適應力來源的一道線索。除此之外,我們從實驗過程中亦找出可視為最接近陰道鞭毛蟲原始細胞生存狀況之培養條件。
英文摘要 Living organisms in natural are always in the face of the stress from the external environment. The environmental stresses can cause cell damage, affect cell development, and even cause the life-threatening injuries. For responding to the stresses, organisms would produce the stress proteins and stop some general working genes. In this study, we supported the rubrerythrin, a non-haem iron binding protein in hydrogenosomes, is a stress protein in Trichomonas vaginalis. T. vaginalis is an anaerobic parasite protozoan which can cause trichomoniasis, a sexually transmitted disease. For clarifying the relationship between rubrerythrin and the different stress factors, we used enzyme-linked immunosorbent assay to profile the expression level of rubrerythrin of T. vaginalis in different culture condition. These results present that rubrerythrin not only could be regulated by iron and glucose but the protein expression level also could be accumulated. Consequently, we have discovered the role of rubrerythrin of T. vaginalis in the environmental stress response. Otherwise, from the regulation relationship between rubrerythrin and the stress factors, iron and glucose, we found the condition which is most suit to the natural living of T. vaginalis.
論文目次 摘要...................................................I
Abstract..............................................II
致謝.................................................III
目錄...................................................V
表目錄...............................................VII
圖目錄..............................................VIII
參考圖表目錄..........................................IX
第一章 緒論............................................1
1.1 陰道鞭毛蟲.........................................1
1.2環境壓力與逆境蛋白..................................4
1.3紅素氧還蛋白 (Rubrerythrin, RBR)....................8
1.4 陰道鞭毛蟲RBR的文獻探討............................9
1.5 實驗目的..........................................10
第二章 材料與方法.....................................12
2.1 陰道鞭毛蟲培養....................................12
2.2 陰道鞭毛蟲解凍....................................12
2.3 蟲體觀察與生長曲線................................13
2.4陰道鞭毛蟲保存.....................................13
2.5 陰道鞭毛蟲蛋白質萃取..............................14
2.6 過氧化氫酶活性測定................................14
2.7西方墨點法 (Western blot).........................15
2.8 免疫螢光染色法 (immunofluorescence staining)......15
2.9酵素免疫分析法 (enzyme-linked immunosorbent assay, ELISA)..................................16
2.10 蛋白質結構預測.................................17
2.11 統計分析.......................................17
第三章 結果.........................................18
3.1 陰道鞭毛蟲之紅素氧還蛋白抗體....................18
3.2 紅素氧還蛋白是逆境蛋白..........................19
3.3 紅素氧還蛋白可以被葡萄糖調控....................21
3.4 陰道鞭毛蟲之最適培養條件........................23
3.5 逆境壓力誘導 RBR 表現量累加.....................23
第四章 討論.........................................25
參考文獻............................................31
附錄 1 儀器與材料...................................55
附錄 2 參考圖表.....................................58
參考文獻 1. A. Regoes, D. Zourmpanou, G. Leon-Avila, M. van der Giezen, J. Tovar, A.B. Hehl Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem, 280 (2005), pp. 30557–30563
2. A.M. Shiflett, P.J. Johnson Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol, 64 (2010), pp. 409–429
3. Adler, V., Schaffer, A., Kim, J., Dolan, L., and Ronai, Z. (1995) UV irradiation and heat shock mediate JNK activation via alternate pathways. J. Biol. Chem. 270: 26071-26077.
4. Akhmanova A, Voncken F, van Alen T, et al. (1998) A hydrogenosome with a genome Nature. 396:52-528.
5. Alban PS, Popham DL, Rippere KE, Krieg NR. (1998) Identification of a gene for a rubrerythrin/nigerythrin-like protein in Spirillum volutans by using amino acid sequence data from mass spectrometry and NH2-terminal sequencing. J Appl Microbiol. 85:875–82.
6. al-Salihi, F.L., J.P. Curran, and J. Wang, Neonatal Trichomonas vaginalis: report of three cases and review of the literature. Pediatrics, 1974. 53(2): p. 196-200.
7. Ancerewicz, J., Migliavacca, E., Carrupt, P. A., Testa, B., Bree, F., Zini, R., Tillement, J. P., Labidalle, S., Guyot, D., and A.M., C.-M. (1998) Structure–Property Relationships of Trimetazidine Derivatives and Model Compounds as Potential Antioxidants. Free Radical Biology & Medicine 25: 113-120.
8. Arroyo, R., A. Gonzalez-Robles, A. Martinez-Palomo, and John, F. A. (1993) Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol. Microbiol. 7:299–309.
9. Attardi G., and Schatz G. Biogenesis of mitochondria. Annu. Rev.Cell. Biol. 4:289-333, 1988
10. B.A. Williams, R.P. Hirt, J.M. Lucocq, T.M. Embley A mitochondrial remnant in the microsporidian Trachipleistophora hominis Nature, 418 (2002), pp. 865–869
11. Benchimol M. (2008) The hydrogenosome as a drug target. Curr. Pharm. Des. 14:872–881
12. Benchimol, M., Johnson, P. J., and de Souza, W. (1996) Morphogenesis of the hydrogenosome: an ultrastructural study. Biol. Cell 87:197–205.
13. Bonomi, F., D. M. Kurtz, and X. Y. Cui. (1996) Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. J. Biol. Inorg. Chem. 1: 67–72.
14. Bozner P (1997) Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J Parasitol 83(2):224-9.
15. Brown, M.T., Trichomoniasis. Practitioner, 1972. 209(253): p. 639-44.
16. Brugerolle, G. (1971) Demonstration of the endocytosis process and lysosome structures in Trichomonas vaginalis. C. R. Hebd. Seances Acad. Sci.Ser. D 272:2–60.
17. Brugerolle, G. (1975) Etude de la cryptopleuromitose et de la morphogenese de division chez Trichomonas vaginalis et chez pleusiers genres de trichomonadines primitives. Protistologica 11:457–468
18. Bui,E.T., Johnson,P.J. (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis Mol.Biochem.Parasitol. 76: 305-310.
19. Catterall R.(1972) Trichomonal infections of the genital tract. Med. Clin. North. Am. 56:1203-1209
20. Catterall, R. D., and Nicol, C. S. (1960) Is trichomonal infestation a venereal disease? Br. Med. J. 1: 1177.
21. Catterall, R.D. (1972) Trichomonal infections of the genital tract. Med Clin North Am, 56(5): p. 1203-9.
22. Cotch, M. F. (1990) Carriage of Trichomonas vaginalis (Tv) is associated with adverse pregnancy outcome, abstr. 681, p. 199. In Program and abstracts of the 30th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, D.C.
23. Coulter ED, Shenvi NV, Kurtz DM. (1999) NADH oxidase activity of rubrerythrin. Biochem Biophys Res Commun. 255:317–23.
24. Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A. A., B. N., Saul, R. L. M., J. M., and Harman, D. (1987) Oxygen radicals and human disease. Ann. Intern. Med. 107: 526-545.
25. Davis SR, Lushbaugh WB (1992) Characterization of the heat-shock response of Trichomonas vaginalis. Am J Trop Med Hyg. 47(1):70-7.
26. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock. 11 (1): 1–12
27. Diamond, L. S. (1986) In vitro cultivation of the Trichomonadidae: a state of the art review. Acta Univ. Carol. Biol. 30:221–228.
28. Dino, P., Kiera, D., Renuka B., and Gray G. (1998) Clinical and Microbiological Aspects of Trichomonas vaginalis. Clin. Microb. Review :300-317.
29. Ellis, J. E., N. Yarlett, D. Cole, M. J. Humphreys, and D. Lloyd. (1994) Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 1402489-2494.
30. Fari, A., Trevoux, R., and Verges. V. (1985) Diagnosis and significance of non-motile forms of Trichomonas vaginalis, abstr. 28a. In Abstracts of the International Symposium on trichomonads and Trichomoniasis.
31. Fialkow, L. C., Chan, K., Rotin, D., Grinsten, S., and Downey, G. P. (1994) Activation of the mitogen-activated protein kinase signaling pathway in neutrophils: role of oxidants. J. Biol. Chem. 269: 31234-31242.
32. Heath, J. P. (1981) Behaviour and pathogenicity of Trichomonas vaginalis in epithelial cell cultures: a study by light and scanning electron microscopy. Br. J. Vener. Dis. 57:106–117.
33. Heather A. Thieringer, Pamela G. Jones, Masayori Inouye (1998) Cold shock and adaptation. BioEssays 20:49–57
34. Honigberg, B. M., and King, V. M. (1964) Structure of Trichomonas vaginalis Donne. J. Parasitol. 50:345–364.
35. J. Tovar, G. Leon-Avila, L.B. Sanchez, R. Sutak, J. Tachezy, M. van der Giezen, M. Hernandez, M. Muller, J.M. Lucocq (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation Nature, 426:172–176
36. Johnson P., Lahti C., and Bradley P. (1993) Biogenesis of thehydrogrnosome in the anaerobic protest Trichomonas vaginalis. J.Parasitol. 79:664-670.
37. Jolly C., and Morimoto R. I. (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst., 92:1564-1573
38. King J. G. and Tsokos G. C. (1998) Heat shock protein 70 kDa : molecular biology, biochemistry, and physiology. Pharmacol. Ther 80:183-201
39. Kinnula VL, Crapo JD. (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 167:1600-1619.
40. Kitchener, K. R., S. R. Meshnick, A. S. Fairfield, and C. C. Wang. (1984) An iron-containing superoxide dismutase in Tritrichomonas foetus. Mol. Biochem. Parasitol. 1295-99
41. L. Putignani, A. Tait, H.V. Smith, D. Horner, J. Tovar, L. Tetley, J.M. Wastling (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum Parasitology, 129:1–18
42. Lehker,M.W., Alderete,J.F. (1992) Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins Mol.Microbiol. 6: 123-132.
43. Lill,R., Muhlenhoff,U. (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem.Sci. 30: 133-141.
44. Lindmark, D. G., and M. Müller. (1974) Superoxide dismutase in the anaerobic flagellates Tritrichomonas foetus and Monocercomonas sp. J. Biol. Chem. 2494634-4637.
45. Lindmark, D.G., Muller, M. (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem 248, 7724–7728.
46. Lirosi, G., and Guarascio A. (1972) Effects of hormonal changes in the vaginal environment in the treatment of vaginitis especially due to Trichomonas. Minerva Ginecol. 24:23–27.
47. Liu, M. Y., and J. Legall. (1990) Purification and characterization of two proteins with inorganic pyrophosphatase activity from Desulfovibrio vulgaris -rubrerythrin and a new, highly-active, enzyme. Biochem. Biophys. Res. Commun. 171:313–318.
48. Liu, Y., Gorospe, M., Yang, C., and Holbrook, N. J. (1995) Role of mitogen-activated protein kinase phospahtase during the cellular response genotoxic stress. J. Biol. Chem. 270: 8377-8380.
49. Madeiro, R.F., Benchimol, M., (2004) The effect of drugs on cell structure of Tritrichomonas foetus. Parasitol. Res. 92, 159–170.
50. Marczak,R., Gorrell,T.E., and Muller,M. (1983) Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus J.Biol.Chem. 258: 12427-12433.
51. Marklund SL. (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Nati Acad Sci. 79:7634-7638.
52. McCord JM, Fridovich I. (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem.244:6049-6055.
53. Mereschkowsky Konstantin (1910). "Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Ent‐stehung der Organismen.". Biol Centralbl. 30: 353‐367.
54. Milligan, S. A., Owens, M. W., and Grisham, M. B. (1998) Differential regulation of extracellular signal-regulated kinase and nuclear factor-κB signal transduction pathways by hydrogen peroxide and tumor necrosis factor. Arch. Biochem. Biophys. 352: 255-262.
55. Mortenson LE, Valentine RC, Carnahan JE (1962). "An electron transport factor from Clostridium pasteurianum". Biochem. Biophys. Res. Commun. 7: 448–52.
56. Müller, M. (1987) Hydrogenosomes of trichomonad flagellates. Acta Univ. Carol. Biol. 30:249–260.
57. Müller, M. (1988) Energy metabolism of protozoa without mitochondria. Annu. Rev. Microbiol. 42:465–488.
58. Müller, M. (1992) Energy metabolism of ancestral eukaryotes: hypothesis based on the biochemistry of amitochondriate parasitic protists. Chin. Med.J. 28:33–40.
59. Müller, M., (1993) The hydrogenosome. J. Gen. Microbiol. 139, 2879–2889.
60. Page-Sharp, M., C. A. Behm, and G. D. Smith. 1996. Tritrichomonas foetus and Trichomonas vaginalis: the pattern of inactivation of hydrogenase activity by oxygen and activities of catalase and ascorbate peroxidase. Microbiology 142207-211.
61. Pereira-Neves, A., Riberio, K. C., Benchimol, M. (2003) Pseudocysts in trichomonads--new insights. Protist. 154: 313-29.
62. Rasoloson, D., E. Tomkova, R. Cammack, J. Kulda, and J. Tachezy. (2001) Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 12345-56.
63. Santoro MG (2000). Heat shock factors and the control of the stress response. Biochemical pharmacology 59 (1): 55–63.
64. Schicke, S. M., Briviba, K., Klotz, L. O., and Sies, H. (1999) Activation of mitogen-activated protein kinases elicited by peroxynitrite: attenuation by selenite supplementation. FEBS Lett. 448: 301-303
65. Simone P¨utz, Gabriel Gelius-Dietrich, Markus Piotrowski, Katrin Henze (2005) Rubrerythrin and peroxiredoxin: Two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol. 142(2):212-23.
66. Sorvillo, F., et al., (2001) Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis, 7(6): p. 927-32.
67. Steinbuchel,A., Muller,M. (1986) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes Mol.Biochem.Parasitol. 20:57-65.
68. Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr (2002) Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol. 44(2):479-88.
69. T. Sano, F. Umeda, T. Hashimoto, H. Nawata, H. Utsumi. (1998) Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes Diabetologia. 41:1355–1360
70. Tagawa K, Arnon DI (1962). "Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas". Nature 195 (4841): 537–43.
71. Tanabe, M. (1979) NADH oxidase activity in Trichomonas vaginalis. Exp. Prasitol. 48135-143.
72. Thannickal, V. J. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. 279: 1005-1028
73. Tshiau-Yu Fu. (2006). Rubrerythrin, a non-haem binding protein, expresses in Trichomonas vaginalis in vitro. 國立成功大學微免所碩士論文.
74. Warton, A., and Honigberg B. M. (1979) Structure of trichomonads as revealed by scanning electron microscopy. J. Protozool. 26: 56–62.
75. Weisiger RA, Fridovich I. (1973) Mitochrondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 248:4793-4796.
76. Wei-ting Chang. (2008). The study of cytopathogenesis by Trichomonas vaginalis in vitro. 國立成功大學微免所碩士論文.
77. Whittington, M. J. (1957) Epidemiology of infections with Trichomonas vaginalis in the light of improved diagnostic methods. Br. J. Vener. Dis. 33:80-91.
78. Williams,K., Lowe,P.N., and Leadlay,P.F. (1987) Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis Biochem.J. 246: 529-536.
79. Wølner-Hanssen P, et al., (1989) Clinical manifestations of vaginal trichomoniasis. JAMA. 261(4):571-6
80. Y. Lehmann, L. Meile, M. Teuber (1996) Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J. Bacteriol., 178 : 7152–7158
81. Yang X. D., and Feige U. (1992) Heat shock proteins in autoimmune disease. From causative antigen to specific therapy Experientia., 48:650-656.
82. Yan-Ming Sun, Ying Su, Jia Li, Lan-Feng Wang (2013) Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem. Biophys. Res. Commun. 433(4): 350-361
83. Yeh AP, Chatelet C, Soltis SM, Kuhn P, Meyer J, Rees DC (2000) Structure of a thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus. J Mol Biol. 300(3):587-95.
84. Z. Mai, S. Ghosh, M. Frisardi, B. Rosenthal, R. Rogers, J. Samuelson (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica Mol Cell Biol, 19, pp. 2198–2205

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw