進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201316473700
論文名稱(中文) 高分子介電層表面極性對雙載子有機薄膜電晶體之電特性影響研究
論文名稱(英文) Studies of surface polarity of polymeric dielectircs on ambipolar electrical characteristics of organic thin film transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 莊亞樵
研究生(英文) Ya-Chiao Chuang
學號 l76001016
學位類別 碩士
語文別 中文
論文頁數 123頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-唐富欽
口試委員-王右武
中文關鍵字 有機薄膜電晶體  雙極性電晶體  有機互補式反相器  聚電解質 
英文關鍵字 organic thin film transistors  ambipolar transistors  organic complementary-like inverters  polyelectrolytes 
學科別分類
中文摘要 本論文探討聚電解質介電層對五環素雙極性有機薄膜電晶體電特性的影響,實驗分為兩個部分,第一部分聚焦於使用不同聚電解質修飾層,研究其對五環素電晶體電特性的影響,進而達成具平衡雙極性電特性之薄膜電晶體。第二部分,利用含聚電解質之多層堆疊複合層當介電層,研究對應的元件電特性及其操作穩定性,並製作以雙極性五環素薄膜電晶體為基礎元件之互補式反相器,探討元件電壓轉換特性。
第一部分,探討具不同極性之介電修飾層對雙極性電晶體電特性的影響,使用陰離子聚電解質-聚苯乙烯磺酸鈉與陽離子聚電解質-聚季銨鹽兩種材料作為介電修飾層,並將此兩種聚電解質材料分別搭配聚甲基丙烯酸甲酯製成堆疊式複合介電修飾層。由實驗結果得知,使用聚苯乙烯磺酸鈉當雙極性電晶體介電修飾層,可有效降低P型操作之臨界電壓;若使用聚季銨鹽當介電修飾層,則可降低元件N型操作之臨界電壓。利用電容-電壓量測結果與元件電特性分析,推論在閘極偏壓作用下,於聚電解質修飾層與半導體之界面會形成電雙層結構,有利正負電荷在通道內快速累積,致使電晶體之臨界電壓提前。
第二部分,探討使用聚電解質當介電修飾層之雙極性電晶體,元件操作穩定性,並利用兩相同雙極性電晶體製備有機互補式反向器。實驗結果顯示,使用陽離子聚電解質之元件,可有效降低反向器之順向與逆向開關切換電壓差與遲滯面積,證明反向器的開關切換電壓高度相關於雙極性電晶體的臨界電壓。最後,吾人達成利用雙極性電晶體製作之反向器,其開關切換電壓(VS)幾乎可達到VS =VDD/2的理想狀態。
英文摘要 This study investigated the effects of a polyelectrolyte gate dielectric buffer layer on the electrical characteristics of pentacene-based ambipolar organic thin-film transistors (OTFTs) and complementary-like inverters. The study can be divided into two parts. The first one focuses on the effects of different polyelectrolyte gate dielectric buffers on the electrical characteristics of pentacene-based OTFTs toward balanced ambipolar electrical characteristics. The second one focuses on the ambipolar electrical characteristics and operational stability of pentacene-based OTFTs with polymer/polyelectrolyte multilayer stack gate dielectric buffer layers. We also studied the electrical characteristics of complementary-like inverters based on pentacene-based ambipolar OTFTs.
In part 1, we fabricated pentacene-based OTFTs using two kinds of polyelectrolytesgate dielectric buffer, namely, poly(sodium-p-styrenesulfonate) (PSS) and polyquaternium-22 (DDA). Pentacene-based OTFTs with a polyelectrolyte/poly(methyl methacrylate) (PMMA) multilayer gate dielectric buffer were also prepared. An early induced threshold voltage of devices for p-channel operations was observed using the PSS gate dielectric buffer. By contrast, an early induced threshold voltage for n-channel operations was observed using the DDA gate dielectric buffer. Combining the results of electrical characteristics of OTFTs and capacitance–voltage measurements of metal–insulator–semiconductor and metal–insulator–metal capacitors revealed that the early induced threshold voltage effects can be attributed to the formation of an electric double layer (EDL) at the interface between pentacene and polymer. This EDL benefited the rapid accumulation of charges within the active channel.
In part 2, we studied the electrical properties and operational stability of pentacene-based ambipolar OTFTs with a polyelectrolyte gate dielectric buffer and complementary-like inverters based on two identical ambipolar OTFTs. We prepared pentacene-based OTFTs with balanced ambipolar characteristics using DDA as a gate dielectric buffer. With the balanced ambipolar OTFTs, we observed a decrease in the hysteresis area defined as the difference between forward and reverse switching voltages. This result indicated that the switching voltages of the complementary-like inverters highly depended on the threshold voltages of the individual p-channel and n-channel transistors. Finally, we obtained almost ideal complementary-like inverters based on two identical ambipolar OTFTs with a polyelectrolyte gate dielectric buffer.
論文目次 摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XIII
第一章 簡介 1
1-1有機半導體簡介 1
1-2有機薄膜電晶體基本構造 3
1-2-1 有機薄膜電晶體材料 3
1-2-2 有機薄膜電晶體結構 4
1-3場效電晶體操作原理 5
1-3-1有機薄膜電晶體操作原理 5
1-3-2有機薄膜電晶體計算公式 6
1-3-3雙載子有機薄膜電晶體計算公式 8
1-4互補式金氧半場效電晶體作原理 10
1-4-1CMOS反相器操作原理 10
1-4-2CMOS反相器特性 11
1-5研究動機 12
第二章 元件製程及量測分析 22
2-1 實驗材料 22
2-1-1 二氧化矽基板 22
2-1-2 高分子絕緣材料 22
2-1-3 高分子聚電解質修飾層材料 22
2-1-4 有機半導體材料 23
2-2 元件製程 23
2-2-1 清洗基板 23
2-2-2 旋轉塗佈 24
2-2-3 熱蒸鍍 24
2-3 實驗方法 25
2-3-1 加電場裝置 25
2-3-2 電性分析 25
2-3-3 原子力顯微鏡 26
第三章 聚電解質對雙極性有機電晶體電特性影響 28
3-1 前言 28
3-2 實驗方法 31
3-3 結果與討論 32
3-3-1 單一修飾層電性分析 32
3-3-2 雙層修飾層電性 35
3-3-3 相反雙層修飾層電性 37
3-3-4 不同修飾層之電容分析 39
3-4 綜合討論 41
第四章 聚電解質對雙極性有機互補式反相器電特性影響 82
4-1 前言 82
4-2 實驗方法 84
4-3 結果與討論 85
4-3-1 電特性分析 85
4-3-2 電容與靜電力顯微鏡(EFM)分析 87
4-3-3互補式反相器電特性分析 88
4-4 綜合討論 89
第五章 總結與未來展望 115
參考文獻 118


參考文獻 [1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and Alan G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene”, Phys. Rev. Lett., 39, 1977, 1098

[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x”, Journal of the Chemical Society, Chemical Communications, 1977, 578-580

[3] Y. Guo, G. Yu, Y. Liu, “Functional organic field-effect transistors”, Advanced Materials, 22, 4427-4447, 2010.

[4] Y. Wen, Y. Liu, “Recent progress in n-channel organic thin-film transistors”, Advanced Materials, 22, 1331-1345, 2010.

[5] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nature Photonics, 3, 297-303, 2009.

[6] Y. Zhao, W. Z. Liang, “Charge transfer in organic molecules for solar cells : theoretical perspective”, Chemical Society Review, 41, 1075-1087, 2012.

[7] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, J. Li, “Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes”, Advanced Materials, 23, 2823-2827, 2011.

[8] M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, J. Shinar, “Highly efficient solution-processed small molecule electrophosphorescent organic light-emitting diodes”, Advanced Materials, 23, 3590-3596, 2011.

[9] T. Sekitani, T. Someya, “Stretchable, large-area organic electronics”, Advanced Materials, 22, 2228-2246, 2010.

[10] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Materials. 10, 365 ,1998.

[11] M. Rockele, D. V. Pham, A. Hoppe, J. Steiger, S. Botnaras, M. Nag, S. Steudel, K. Myny, S. Schols, R. Muller, B. V. D. Putten, J. Genoe, P. Heremans, “Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs”, Organic Electronics, 12, 1909-1913, 2011.

[12] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, “Flexible organic transistor and circuits with extreme bending stability”, Nature Materials, 9, 1015-1022, 2010.

[13] D.K. Hwang, C. F-H, J. B. Kim, W. J. P. Jr., B. Kippelen, “Flexible and stable-processed organic field-effect transistors”, Organic Electronics, 12, 1108 ,2011.

[14] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction”, J. Am. Chem. Soc., 126, 4084, 2004.

[15] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras, “Pentacene Thin Film Growth”, Chem. Mater., 16, 4497, 2004.

[16] G. R. Desiraju and A. Gavezzotti, “Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure”, Acta Crystallogr. Sec. B, 45, 473. 1989.

[17] D. Li, E. J. Borkent, R. Nortrup, H. Moon, H. Katz, Z. Bao, “Humidity effect on electrical performance of organic thin-film transistors”, Applied Physical Letters, 86, 042105, 2005.

[18] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of thresholdvoltage shift in InGaZnO thin film transistors”, Applied Physical Letters, 93, 093504, 2008.

[19] W. Y. Liu,J. S. Lee, V. Talapin Dmitri, “III-V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse”, Jorunal of American Chemical Society, 135, 1349-1357,2013.

[20] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones, “High performance organic thin film transistors”, Mater. Res. Soc. Symp. Proc., 771, 169 ,2003.

[21] R. G. D. Valle, A. Brillante, E. Venuti, L. Farina, A. Girlando and M. Masino, “Exploring the polymorphism of crystalline pentacene”, Organic Electronics, 5, 1 , 2004.

[22] C. C. Mattheus, G. A. de Wijs, R. A. de Groot and T. T. M. Palstra, “Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc., 125, 6323,2003.

[23] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and M. F. Toney, “Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction”, J. Am. Chem. Soc., 126, 4084 ,2004.

[24] W. Warta and N. Karl, “Hot holes in naphthalene: High electric-field-dependent mobilities”, Phys. Rev. B, 32, 1172, 1985.

[25] S. M. Sze, “Semiconductor Devices: Physics and Technology” 2nd editon, Wiley New York, 187, 2001.

[26] R. Schmechel, M. Ahles, H. V. Seggem, “A pentacene ambipolar transistor : Experiment and theory”, Journal of Applied Physics, 98, 084511, 2005.

[27] H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slanina, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures”, Journal of Applied Physics, 87, 4189-4193, 2000.

[28] W. C. Wang, C. H. Wang, J. Y. Lin, J. Hwang, “Thermal expansion coefficient considerations on field-effect mobility of pentacene organic thin-film transistors with an AIN gate dielectric”, IEEE Transactions on electron device, 59, 225-229, 2012.

[29] L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J., 369, 1992.

[30] J. A. Merlo , C. R. Newman , C. P. Cerlach , T. W. Kelley , D. V. Muyres , S. E. Fritz , M. F. Toney and C. D. Frisbie, “p-Channel Organic Semiconductors Based on Hybrid Acene−Thiophene Molecules for Thin-Film Transistor Applications”, J. Am. Chem. Soc., 127 (11), 3997–4009, 2005.

[31] J. E. Shaw, P. N. Stavrinou, T. D. Anthopoulos*, “On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography”, Advanced Materials, 25, 552-558, 2013

[32] A. Facchetti, M. H. Yoon, T. J. Marks, “Gate dielectrics for organic field-effect transistors:New opportunities for organic electronics”, Advanced Materials, 17, 1705-1725, 2005.

[33] M. H. Yoon, C. Kim, A. Facchetti, T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, Journal of American Chemical Society, 128, 12853-12869, 2006.

[34] S. M. Zhang,Y. G. Wen, W. Y. Zhou, Y. L. Guo, L. C. Ma, X. G. Zhao, Z. Zhao, S. Barlow, S. R. Marder, Y. Liu, X. W. Zhan, “Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in n-channel and ambipolar field-effect transistors”, Journal of Polymer Science, 51, 1550-1558, 2013.

[35] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M.Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Materials, 2, 678,2003

[36] J. C. Bijleveld , A. P. Zoombelt , S. G. J. Mathijssen , M. M. Wienk , M. Turbiez , D. M. de Leeuw and R. A. J. Janssen, “Poly(diketopyrrolopyrrole−terthiophene) for Ambipolar Logic and Photovoltaics” ,J. Am. Chem. Soc.,131 (46), 16616–16617,2009

[37] J. Zaumseil and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors”, Chem. Rev., 107, 1296-1323,2007

[38] L. Herlogsson, X. Crispin, S. Tierney, and M. Erggren, “Polyelectrolyte-Gated Organic Complementary Circuits Operating at Low Power and Voltage”, Advanced Materials, 10.1002, 4684, 2011

[39] A. Malti, M. Berggren, and X. Crispin, “Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors”, Applied Physics Letters, 100, 183302 , 2012

[40] A. Malti, E. O. Gabrielsson, M. Berggren, and X. Crispin, “Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors”, Applied Physics Letters, 99, 063305, 2011

[41] J. Liu, L. Herlogsson, A. Sawatdee, P. Favia, M. Sandberg et al., “Vertical polyelectrolyte-gated organic field-effect transistors”, Applied Physics Letters, 97, 103303 ,2010
[42] M. Kraus, S. Haug, W. Brutting, A Opitz, “Achievement of balanced electron and hole mobility in copper-phthalocyanine field-effect transistors by using a crystalline aliphatic passivation layer”, Organic Electronics, 12, 731-735, 2011

[43] A. Dodabalapur, J. Baumbach, K. Baldwin, H. E. Katz, “Hybrid organic/inorganic complementary circuits”, Applied Physical Letters, 68, 2246-2248, 1996.

[44] J. H. Schön*,S. Berg, Ch. Kloc, B. Batlogg, “Ambipolar pentacene field-effect transistors and inverters”, SCIENCE, 10, 1022-1023, 2000

[45] S. J. Noever, S. Fischer, B. Nickel*, “Dual Channel Operation Upon n-Channel Percolation in a entacene-C60 Ambipolar Organic Thin Film Transistor”, Advanced Materials, 25, 2147-2151, 2013

[46] B. Yoo, T. Jung, D. Basu, A. Dodabalapur, B. A. Jones, A. Facchetti, M. R. Wasielewski, and T. J. Marks, “High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators”, Applied Physical Letters, 88, 082104, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw