進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201310415500
論文名稱(中文) 具全方向漫射型反射鏡之覆晶型白光發光二極體之研究
論文名稱(英文) Investigation of flip-chip white light-emitting-diodes using omnidirectional diffused reflectors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 蘇郁婷
研究生(英文) Yu-Ting Su
學號 L76001040
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-李欣縈
口試委員-李清庭
口試委員-劉代山
口試委員-林祐仲
中文關鍵字 覆晶型白光發光二極體  漫射型奈米柱反射鏡  遠端塗佈螢光粉技術 
英文關鍵字 flip-chip white LED  diffused nanorod reflector  remote phosphor coating technique 
學科別分類
中文摘要 為了製作出高效率之白光發光二極體,本研究利用奈米柱陣列結合鋁金屬反射鏡,製成全方向漫射型反射鏡應用於傳統覆晶型藍光發光二極體,並於出光面再成長氧化鋅奈米柱陣列作為一抗反射層,最終以遠端塗佈法塗佈釔鋁石榴石(Y3Al5O12:Ce3+,YAG:Ce3+)黃色螢光粉,製成白光發光二極體。相較於平坦型反射鏡覆晶型白光發光二極體,具有全方向漫射型反射鏡之覆晶型白光發光二極體在相同操作電流下,其光輸出功率可提升由19.95 mW提升至23.91mW,而螢光粉轉換效率則由75.8%提升至80.1 %。此特性改善乃由於全方向漫射型反射鏡可增加背部反射光以及氧化鋅奈米柱陣列作為抗反射層,兩者皆可讓更多藍光激發至黃色螢光粉,使得整體白光提升,故利用全方向漫射型反射鏡結合抗反射層及遠端塗佈技術,可成功實現製作高效率白光發光二極體之目標。
英文摘要 To fabricate high performance white light-emitting diodes (WLEDs), the novel omnidirectional diffused reflectors constructed by depositing the high reflective Al metal on the ZnO nanorod arrays were applied in the conventional nitride-based flip-chip light-emitting-diodes (LEDs). Furthermore, the ZnO nanorods were also grown on the output side of the flip-chip LEDs as the anti-reflection layers. Finally, the yellow phosphor (Y3Al5O12:Ce3+, YAG:Ce3+) layer was coated on the ZnO nanorods anti-reflection layer using the remote phosphor coating technique. Compared with the light output power of 19.95 mW and phosphor conversion efficiency of 75.8% of the nitride -based flip-chip WLEDs with flat reflector, the light output power and phosphor conversion efficiency of the resulting remote WLEDs with diffused reflector operated at the same injection current were improved to 23.91 mW and 80.1%, respectively. The improvement was attributed to the effective back reflection by the omnidirectional diffused reflectors and the ZnO nanorods anti-reflection layer, both of which could guide more blue light to pump the phosphor layer. Consequently, the required white emission was enhanced. The promising diffused reflectors combined with the antireflection layer and remote phosphor coating technique can be applied to realize high performance WLEDs.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1發光二極體之發展概況 1
1.2研究動機及目的 3
第二章 原理 5
2.1簡介 5
2.2發光二極體之發光原理 5
2.2-1司乃耳定律(Snell’s Law) 6
2.2-2菲涅爾損耗(Fresnel Loss) 7
2.3螢光粉發光原理 8
2.4 發光二極體能量轉換過程與效率 8
2.5 CIE 色度座標 9
2.6氧化鋅奈米柱陣列之成長原理 11
2.7漫射理論 13
2.8 TracePro 模擬軟體 14
2.9 量測方法原理與儀器 15
2.9-1積分球原理 15
2.9-2多角度光強度量測儀 16
第三章 元件製程步驟 22
3.1氮化鎵/氮化銦鎵發光二極體製程步驟 22
3.1-1試片的清潔 23
3.1-2黃光微影 23
3.1-2-1高台製作 23
3.1-2-2 n型氮化鎵金屬電極製作 24
3.1-2-3 p型薄金屬擴散電流層製作 25
3.1-2-4 p型氮化鎵厚金屬電極製作 26
3.2漫射型奈米柱反射鏡之製作 27
3.2-1試片清潔 27
3.2-2圖案化之氧化鋅鋁晶種層 28
3.2-3 水熱法成長氧化鋅奈米柱陣列 29
3.2-3-1 試片的清潔 29
3.2-3-2氧化鋅奈米柱成長流程 29
3.2-4圖案化之金屬反射鏡 30
3.3出光面成長氧化鋅奈米柱 31
3.3-1 試片清潔 31
3.3-2成長氧化鋁鋅晶種層 31
3.3-3 水熱法成長氧化鋅奈米柱 32
3.4遠端塗佈螢光粉 33
第四章 實驗量測分析與結果討論 40
4.1出光面最佳奈米柱之長度應用於具漫射型奈米柱反射鏡覆晶型藍光發光二極體分析 40
4.1-1具漫射型奈米柱反射鏡覆晶型藍光二極體分析 40
4.1-2出光面不同奈米柱長度之元件輸出光功率特性 40
4.1-3 TracePro 模擬軟體之元件輸出光功率特性 42
4.2元件特性量測比較 42
4.2-1螢光粉材料特性分析 42
4.2-2電流-電壓的比較(I-V curve) 43
4.2-3電激發光光譜比較(EL spectrum) 44
4.2-4在不同電流值下其輸出光功率特性之比較 44
4.2-5光場分佈特性 45
4.3螢光粉光功率轉換效率 46
4.3-1漫射型奈米柱反射鏡對白光白光二極體螢光粉之能量轉換效率增益 46
4.3-2出光面之奈米柱陣列對白光發光二極體螢光粉之能量轉換效率增益 47
4.3-3電流改變對白光發光二極體螢光粉之轉換效率影響 48
第五章 結論 66
參考文獻 67
參考文獻 [1]. N. Holonyak, Jr. and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
[2]. S. Nakamura, and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, Berlin, 1997).
[3]. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687 (1994)
[4]. 郭浩中、賴芳儀、郭守義, LED原理與應用 (五南圖書出版公司,2009)。
[5]. T. Tamura, T. Setomoto, and T. Taguchi, “Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry,” J. Lumin. 87, 1180 (2000)
[6]. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J.M. Tsai, G. C. Chi, R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photonics Technol. Lett. 15, 18 (2003).
[7]. G. Bogner, A. Debray, G. Heidel, K. Hoehn, U. Muller, and P. Schlotter, "White LED," Proc. SPIE 3621, 143(1999).
[8]. D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls, ”IEEE Photon. Technol. Lett. 21, 510 (2009).
[9]. C. C. Lin and C. T. Lee, “Enhanced Light Extraction of GaN-Based Light Emitting Diodes Using Nanorod Arrays, ” Electrochem. Solid State Lett. 13, H278 (2010).
[10]. J. Y. Kim, M. K. Kwon, I. K. Park, C. Y. Cho, S. J. Park,D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced light extraction efficiency in flip-chip GaN light-emitting diodes with diffuse Ag reflector on nanotextured indium-tin oxide, ” Appl. Phys. Lett. 93, 021121(2008).
[11]. O. B. Shchekin, a J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes, ” Appl. Phys. Lett. 89, 071109 (2006).
[12]. C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, F. T. Hwang, “Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction,” Appl. Phys. Lett. 78, 3412 (2001).
[13]. D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light emitting diodes with ZnO current spreading layers deposited from a low temperature aqueous solution,” Appl. Phys. Exp. 2, 042101 ( 2009).
[14]. Chih-Chien Lin and Ching-Ting Lee, “Enhanced light extraction of GaN-based light-emitting diodes using nanorod arrays”, Electrochem. Solid State Lett. 13, H278 (2010).
[15]. K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94, 071118 (2009).
[16]. Y. Zhu and N. Narendran, “Optimizing the performance of remote phosphor LEDs,” J. Light & Vis. Env. 32, 115 (2008).
[17]. E. F. Schubert, Light Emitting Diodes, Cambridge University Press, Cambridge (2003)
[18]. 劉如熹、王健源, 白光發光二極體製作技術 (全華科技圖書公司,2005)。
[19]. P. Goldberg, Luminescence of Inorganic Solids; Academic Press: New York, (1966).
[20]. D. A. Skoog F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
[21]. N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D.Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133 (2004).
[22]. R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power Phosphor-converted Light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339 (2002).
[23]. R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115 (2004).
[24]. Hunt, R. W. Measuring colour. 3rd edition. Fountain Press, England. 1998.
[25]. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Appl. Phys. Lett. 86, 243505 (2005).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw