進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2008201216284200
論文名稱(中文) 台灣南部地區公共場所室內空氣品質現況之研究
論文名稱(英文) Indoor Air Quality Study of Public Sites in Southern Taiwan
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 王怡敦
研究生(英文) Yi-Tun Wang
學號 n48951221
學位類別 博士
語文別 英文
論文頁數 89頁
口試委員 指導教授-申永輝
指導教授-溫紹炳
召集委員-葉茂榮
口試委員-廖學誠
口試委員-余光昌
中文關鍵字 室內空氣品質  簡易直讀式儀器 
英文關鍵字 indoor air quality  direct detection apparatus 
學科別分類
中文摘要 本研究依據環保署公告之標準方法,調查2009~2010年台灣南部地區具代表性之21站次公共場所之室內空氣品質,調查之場所包括醫院、學校、速食店、健身中心、政府公務部門、圖書館、戲院、車站及大賣場,調查項目為二氧化碳、一氧化碳、甲醛、總揮發性有機化合物、細菌、真菌、粒徑10微米(μm)以下之懸浮微粒(PM10)、粒徑2.5微米(μm)以下之懸浮微粒(PM2.5)、臭氧及溫度等10個項目。檢測結果顯示各測定場所之HCHO、O3、PM2.5 及PM10測值皆低於公告建議值;CO測值僅有一醫療院所受到鄰近道路交通工具廢氣排放之影響超出建議值;屬於第一類場所之醫療場所及學校教室之CO2測值均超出公告建議值,其他第二類場所包括部政府公務部門及大賣場,亦發現因密閉空間人口密度過高,換氣率不足而高於建議值之案例;所調查之室內場所中,僅有一健身中心位於地下停車場所規劃出之隔間空間,且內部設有鍋爐供應熱水設備,在換氣設計不當的情況下,導致TVOCs測值超出建議值;真菌菌落數調查結果發現醫院候診區、學校教室、政府公務部門、圖書館及車站均有超標情形;細菌菌落數在第一類場所包括醫院及學校教室中,全數高於法規建議值,在二類場所超標的包括速食店、健身中心、政府公務部門及大賣場;另選定澎湖及金門離島境內21處具代表性之公共場所進行室內空氣品質檢測,結果顯示各測定場所之CO、HCHO、PM10及PM2.5測值皆低於公告建議值;醫療場所之CO2、O3濃度及總細菌菌落數皆高於環保署室內空氣品質第一類建議值;教育場所之CO2及總真菌菌落數皆高於環保署室內空氣品質第一類建議值;1處公共場所CO2測值超出公告建議值;營業場所中一處購物中心之TVOC及CO2測值超出公告建議值,另有一家電影院之細菌數亦超出建議值 。綜整上述結果,外氣可能引致之室內空氣品質問題,及公共場所之空間規劃與換氣設計是否應予以細部規劃分類,皆有賴主管機關與公私場所共同擬訂可行對策,除了提升場所正面形象俾開發隱藏效益,並為空間使用者帶來健康及舒適的空間環境,締造雙贏的局勢。而台灣離島地區室內空氣中CO2及微生物的問題存在於各行業別中,對於空間人數掌控及空調品質管理,亟待政府相關單位及公私場所訂定一套對策,以提供民眾健康的空間環境。

研究過程中分別使用簡易直讀式儀器及環保署公告之標準方法,在不刻意現場環境控制情況下進行比對,以CO、CO2、O3、TVOC、HCHO、PM10及PM2.5等7個項目進行實場比對測試,以瞭解這兩種型式之監測儀在實際進行監測時,其間差易情形。經由簡易直讀式儀器與公告標準方法進行現場平行比對之結果觀察,CO2、PM10及PM2.5測值呈現高度相關性(r >0.7;p <0.01),其中,CO2比對結果亦與環保署97年度研究結果一致,此結果顯示公共場所未來以簡易直讀式儀器巡檢時CO2測值亦具有相當程度之可信度。緣此,建議主管機關考慮採用輕便快速且機動性強之CO2簡易直讀式儀器取代公告方法檢測。而HCHO及TVOC等測項兩方法檢測值差異甚大,呈低度相關(r <0.4),除因為測值多為低濃度或小於偵測極限造成RPD值偏高外,儀器之分析原理、偵測器可反應之化合物不同及交叉干擾等因素皆為造成比對結果不如預期之原因。
英文摘要 This study selected 21 representative public sites for the survey of indoor air quality (IAQ) in Tainan area, including hospital, school, fitness center, government office, library, theater, transport station, and supermarket. IAQ was first assessed by direct detection apparatus, including CO2, CO, HCHO, TVOCs, bacteria, fungi, PM10, PM2.5, O3 and temperature. Based on the results of walk-through detection, the spatial distribution of indoor air contaminants was further measured in a 24 hour period by the EPA standard method. The detailed measurements illustrated HCHO, O3, PM10 and PM2.5 concentrations are lower than the suggested threshold levels in all public sites. CO2 concentrations at hospitals and school are all exceeding category 1 threshold of 600 ppm. Bacteria exceeding the suggested threshold of 500 CFU/m3 for category 1 and 1000 CFU/m3 for category 2 is popular at most public sites. One fitness center was found exceeding the TVOCs threshold of 3 ppm, and outdoor air can be a potential source. The high levels of CO2 and bacteria were a common IAQ problem, and the regulated strategy of crowd control and air conditioning management was required for a healthy indoor environment.
Furthermore, selected 21 public sites for IAQ investigation located at Penghu and Kinmen Islands (Taiwan). IAQ measurements include CO2, CO, HCHO, TVOCs, bacteria, fungi, PM10, PM2.5, O3 and temperature, which were conducted during year 2010 and 2011. The results showed that the concentrations of CO, HCHO, PM10 and PM2.5 were below Taiwan EPA’s suggested IAQ threshold levels at all public sites. CO2 concentrations at hospitals and school are all exceeding category 1 threshold of 600 ppm. Besides, the levels of O3 and bacteria for hospitals and fungi for schools were all higher than the suggested IAQ threshold levels. One supermarket was found exceeding the suggested IAQ threshold levels on TVOCs and CO2. The theater was found exceeding the suggested bacteria threshold. This study discovered that the high CO2, bacteria and fungi levels occurred at various public sites. Accordingly, the regulated strategy of crowd control and air conditioning management was required for a healthy indoor environment.
20 public sites were selected as case studies to compare the difference of IAQ measurements. IAQ was first assessed by direct detection apparatus, including CO2, CO, HCHO, TVOCs, PM10, PM2.5, and O3. Based on the results of walk-through detection, indoor air contaminants at hot-spot location were measured in a 24 hour period by the EPA standard method. The use of direct detection apparatus has the advantages of easy operation, high mobility, rapid detection, and less cost. However, official data of IAQ measurement is based on the detailed measurement by Taiwan EPA’s standard methods that possess high precision and accuracy. The comparison of direct detection data and the detailed measurements by standard methods illustrated that there exists a high linear relationship for CO2, PM10 and PM2.5 measurements. It means that direct detection data of CO2, PM10 and PM2.5 are reliable, and direct detection apparatus can be applied to monitoring of these indoor air contaminants for the better control of their accumulations.
論文目次 Table of Contents
摘要 I
Abstract IV
Table of Contents VI
Table index VIII
Figure index IX
Figure index IX
Chapter 1 Introduction 1
1.1 Research Objective 1
1.2 Research Framework 3
Chapter 2 Paper Review 5
2.1 Characteristics of indoor air pollutant 5
2.2 The source of indoor air pollutants [,,] 7
2.2.1 Carbon dioxide (CO2) 7
2.2.2 Organic pollutants (HCHO, TVOCs) 8
2.2.3 Biological pollutants 11
2.3 The source of indoor air pollution 11
2.4 The transmission pathway of indoor air pollutants 14
2.5 Status of the development of international and domestic IAQ control 16
2.5.1 Status of the development of international IAQ control [,] 16
2.5.1 Status of the development of domestic IAQ control 23
Chapter 3 Methodology and Instruments 27
3.1 Principles of measurement point setup 27
3.2 Analysis item and method 30
3.3 Direct detection apparatus 36
3.4 Data quality assurance goals 41
3.4.1 Workflow 41
3.4.2 Proper nouns 42
3.4.3 The project quality goal 43
Chapter 4 Investigation on IAQ of public sites in Tainan area 44
4.1 Preface 44
4.2 Methodology 46
4.3 Results and discussions 46
4.3.1 The IAQ measurement of CO 48
4.3.2 The IAQ measurement of CO2 49
4.3.3 The IAQ measurement of formaldehyde (HCHO) 50
4.3.4 The IAQ measurement of ozone (O3) 51
4.3.5 The IAQ measurement of particulates (PM2.5, PM10) 52
4.3.6 The IAQ measurement of TVOCs 54
4.3.7 The IAQ measurement of bacteria and fungi 55
4.4 Conclusion 57
Chapter 5 IAQ investigation of public sites in southern Taiwan and isolated islands area 58
5.1 Preface 58
5.2 Methodology 58
5.3 Results and discussions 59
5.3.1 The IAQ measurement in school 61
5.3.2 The IAQ measurement in hospital 61
5.3.3 The IAQ measurement in public space 62
5.3.4 The IAQ measurement in store 62
5.3.5 Discussion of PM2.5/PM10 correlation 64
5.4 Conclusions and suggestions 70
Chapter 6 Comparison of IAQ measurement by using direct detection apparatus and standard method 71
6.1 Preface 71
6.2 Methodology 72
6.2.1 Inspection of portable directly-reading 72
6.2.2 Standard method proposed by EPA 74
6.2.3 Parallel comparison 74
6.3 Results and discussions 75
6.3.1 CO2 75
6.3.2 CO 76
6.3.3 PM2.5 and PM10 77
6.3.4 O3 79
6.3.5 HCHO 80
6.3.6 TVOCs 81
6.3.7 Relative Percent Difference 82
6.4 Conclusions 85
Reference 87

參考文獻 賴耿陽, “室內空氣污染”,台灣復文興業有限公司,(1994)。
行政院環境保護署網站,http://ivy5.epa.gov.tw/epalaw/index.aspx
王昭俊、趙加寧、劉京,”室內空氣環境”,化學工業出版社,(2006)。
Hines, A.L., Ghosh, T.K., Loyalka, S.K., Warder, R.R.(Eds.) Indoor air quality and control, Englewood Cliffs, NJ: Prentice-Hall,1993.
Hadnagy, W.; Stiller-Winkler, R.; Kainka, E.; Ranft, U.; Idel, H., Influence of urban particulate air pollution (PM10; PM2.5) on the immune system of children, Journal of Aerosol Science, Vol: 29, Supplement 2, September, 1998, pp. S997-S998.
Pope III, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D., Godleski, J.J., 2004. Cardiovascular mortality and longterm exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109,71–77
Kleinman, M.T.; Araujo, J.A.; Nel, A.; Sioutas, C.; Campbell, A.; Cong, P.Q.; Li, H.; Bondy, S.C., Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways, Toxicology Letters Volume: 178, Issue: 2, May 5, 2008, pp. 127-130.
王小逸,”室內空氣監測方法與應用”,中國環境科學出版社,(2006)。
李彥頤,辦公空間室內空氣品質管制策略之研究,博士論文,國立成功大學建築研究所,(2004)。
US EPA: Building Air Quality: A Guide for Building Owners and Facility Managers (US Government Printing Office, ISBN 0-16-035919-8 Washington, DC, US 1991).
Xinhua Wang, Xinhui Bi, Duohong Chen, Guoying Sheng, Jiamo Fu., Hospital indoor respirable particles and carbonaceous composition, Building and Environment 41 (2006) 992–1000.
US EPA: Building Air Quality: A Guide for Building Owners and Facility Managers (US Government Printing Office, ISBN 0-16-035919-8 Washington, DC, US 1991).
行政院環保署專題委託研究計畫,大氣環境中一般空氣污染物與生物性氣膠健康影響評估,EPA-94-Fall-03-A208。
邱玲萱,” 醫療院所室內空氣品質特徵研究”,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,(2009)。
張神鳳,”公共場所室內空氣品質調查與分析-以醫療院所為例”,碩士論文,崑山科技大學環境工程研究所,(2010)。
Hines, A.L., Ghosh, T.K., Loyalka, S.K., Warder, R.R.(Eds.) Indoor air quality and control, Englewood Cliffs, NJ: Prentice-Hall,1993
Taiwan EPA Environmental Analysis Laboratory onttp://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR
Shun-ChengLee, HaiGuo, Wai-Ming Li, Lo-Yin Chan., Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong, Atmospheric Environment 36 (2002) 1929–1940.
S.C. Lee, M. Chang, Indoor and outdoor air quality investigation at schools in Hong Kong. CHEMOSPHERE. 41. (2000) 109-113
Sehyun Han, Jong-Sang Youn, Yong-Won Jung. Characterization of PM10 and PM2.5 source profiles for resuspended road dust collected using mobile sampling methodology. Atmospheric Environment 45 (2011) 3343-3351.
陳錦煌,”室內空氣品質自主管理推動計畫”,景丰科技股份有限公司,行政院環境保護署,(2007)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw