進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007202009435300
論文名稱(中文) 以流體化床反應器探討鈦鐵礦載氧體於化學環路燃燒CO、H2及CH4之研究
論文名稱(英文) Study on Chemical Looping Combustion of CO, H2, and CH4 Using Ilmenite Oxygen Carrier in a Fluidized Bed Reactor
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李俊達
研究生(英文) Chun-Ta Li
學號 P56071117
學位類別 碩士
語文別 英文
論文頁數 191頁
口試委員 口試委員-劉守恒
口試委員-李玉郎
口試委員-林弘萍
指導教授-朱信
中文關鍵字 化學環路燃燒  載氧體  鈦鐵礦  流體化床  合成氣 
英文關鍵字 Chemical looping combustion  Oxygen carrier  Ilmenite  Fluidized bed reactor  Syngas 
學科別分類
中文摘要 隨著二氧化碳排放量的增加及對於氣候變遷的問題日益嚴重,減少二氧化碳從化石燃料燃燒中的產生,以及發展新型的能源技術是一個迫切的需要。為了達成這個目標,二氧化碳捕獲利用與封存的技術(CCUS)成為世界各國的發展重點,在眾多技術中,化學環路燃燒(Chemical looping combustion, CLC)被視為最有競爭力的技術之一,可以有效地降低二氧化碳捕獲利用與封存的成本,增加燃燒效率,並減少NOx的生成。鈦鐵礦礦石是用於化學環流燃燒(CLC)的氧氣載體(OCs)中最具有潛力的材料之一。
本研究使用的鈦鐵礦在1,000℃下鍛燒作為載氧體,於流體化床反應器中與氣化合成氣(H2, CO, CH4)進行化學環路燃燒,探討不同操作條件(粒徑大小、濃度、溫度、氣體流速)對於載氧體反應性與反應速率的影響。在TPR的分析中,經過升溫至950℃並持溫60分鐘後,鍛燒鈦鐵礦對於10% H2, CO與CH4的轉換率為88.7, 64.2, 79.2%,指出鍛燒鈦鐵礦作為載氧體與合成氣反應要達到反應完成的時間較長,並且在10% CH4的案例中發現有積碳的產生。在流體化床實驗中,粒徑對於利用率與反應速率的影響並不顯著,而利用率與反應速率 皆隨著反應氣體濃度、操作溫度、氣體流速的增加而增加。此實驗中CH4具有積碳的影響,這對於利用率與反應速率難以評估。於複合氣體(CO+H2)作為反應氣體的條件下,較高的氣體濃度可以增加利用率與反應速率。由EDS與EA的結果可以得知,積碳的多寡取決於較高的CO與CH4的氣體濃度與適合的操作溫度。在10次的氧化循環實驗中,載氧體在第一個循環表現出最高的利用率與反應速率,而在第二次循環後利用率與反應速率的下降,由BET、SEM、EDS與XPS的結果指出是由燒結與富鐵現象所造成。
英文摘要 With the impact of CO2 emission on climate change, reducing the CO2 production from fossil fuel and developing a novel process for power generation is an urgent need. To reach the goals, the carbon capture utilization and storage (CCUS) is a promising technology. Chemical looping combustion (CLC) should be considered as a prime contender which can efficiently decrease the cost of carbon capture utilization and storage (CCUS), increase the combustion efficiency and avoid the formation of NOx. Ilmenite ore is one of the prospective materials of oxygen carriers (OCs) used for Chemical Looping Combustion (CLC).
In this study, the ilmenite oxygen carrier was used to prepare by calcination at 1,000℃, which called calcined ilmenite. The oxygen carriers were used to react with coal and biomass gasified syngas composed of H2, CO and CH4 under various operating conditions to investigate the effect with the utilization and reaction rate of oxygen carriers. In TPR analysis, the conversions of H2, CO, and CH4 in 10% concentrations are 88.7, 64.2, 79.2%, respectively, in the isothermal process at 950℃ for 60 min. According to the conversion of the oxygen carrier, the calcined ilmenite needs more time to accomplish the reduction, and the carbon deposition occurs in the 10% CH4. In fluidized bed reactor experiments, the particle size difference does not appear to have a significant impact. However, the increasing concentrations, operating temperature, superficial velocity generally cause increasing utilization and reaction rate. For the case using CH4, the hydrogen production and the carbon deposition from the decomposition of CH4 is hard to analyze the utilization and reaction rate of the oxygen carrier. For the complex syngas CLC experiments, the higher syngas concentration leads higher utilization and reaction rate, which the diffusion capacity is better. Moreover, the carbon deposition of CO, CH4 is caused by higher concentrations and preferred operating temperatures which could be proved by the EDS, and EA. In 10 redox cycles experiment, the calcined ilmenite oxygen carrier shows excellent utilization and reaction rate in the first cycle. The utilization and reaction rate decrease after the first cycle. The results mean the oxygen carrier after first cycle could lead a decrease of surface properties, cause sintering or blocking and occur the Fe-rich materials on the surface which could be proved by the BET, SEM, EDS, and XPS.
論文目次 摘要 I
Abstract II
致謝 IV
Content VI
List of tables XI
List of figures XIV
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Objectives 3
Chapter 2 Literature and Review 4
2-1 Introduction to Carbon Dioxide 4
2-1.1 Influence of Carbon Dioxide 4
2-1.2 Carbon capture, utilization and storage 7
2-2 Power generation system 10
2-2.1 Integrated Gasification Combined Cycle (IGCC) 10
2-2.2 Chemical Looping Combustion (CLC) 13
2-2.3 Chemical Looping Reforming (CLR) 16
2-2.4 Chemical looping with Oxygen Uncoupling (CLOU) 18
2-3 Characteristics of syngas 21
2-3.1 Carbon monoxide 21
2-3.2 Hydrogen 22
2-3.3 Methane 25
2-4 Preparation of Oxygen Carrier 27
2-4.1 Mechanical mixing 27
2-4.2 Co-precipitation 27
2-4.3 Sol-gel 28
2-4.4 Incipient wetness impregnation 28
2-4.5 freeze granulation 28
2-4.6 Raw iron ores (Ilmenite) 29
2-5 Type of Oxygen carrier 30
2-5.1 Fe-based oxygen carrier 30
2-5.2 Ni-based oxygen carrier 31
2-5-3 Cu-based oxygen carrier 31
2-5.4 Mn-based oxygen carrier 32
2-6 Characteristics of oxygen carrier 33
2-6.1 Thermodynamics 33
2-6.2 Oxygen ratio 38
2-6.3 Stability of oxygen carrier 39
2-7 Fluidized bed 41
2-7.1 Fluidization 41
2-7.2 Minimum fluidized velocity 45
2-7.3 Experiment evaluation of minimum fluidized velocity and pressure drop 48
2-8 Deactivation of oxygen carrier 50
2-8.1 Sintering 50
2-8.2 Carbon deposition 50
2-8.3 Poisoning 51
2-8.4 losses of active sites 51
2-9 influence of operating parameters 52
2-10 Kinetics 54
2-10.1 Deactivation model 54
2-10.2 Arrhenius equation 56
Chapter 3 Material and Methods 57
3-1 Experimental methods 57
3-1.1 Experimental design 58
3-1.2 Experimental process 60
3-2 Experimental equipment 61
3-2.1 Experimental materials 61
3-2.2 Experimental facilities 62
3-2.3 Analyzer 68
3-3 Preliminary experiment 75
3-3.1 Preparation of oxygen carrier 75
3-3.2 Calibration curve preparation 76
3-3.3 Leakage proof of the system 78
3-3.4 Blank experiments 78
Chapter 4 Results and Discussion 80
4-1 Characteristic of oxygen carriers 80
4-1.1 X-ray diffraction (XRD) analysis and Semiquantitative Analysis 80
4-1.2 Inductively couple plasma optical emission spectrometry (ICP-OES) 83
4-1.3 Temperature programmed reduction (TPR) analysis 84
4-1.4 Isothermal thermogravimetric analysis 91
4-1.5 BET surface area analysis 96
4-2 Fluidization 98
4-2.1 The relationship between pressure drop and superficial velocity 98
4-2.2 Comparison of the experimental and simulated minimum fluidized velocity 102
4-3 Operating parameters experiment 107
4-3.1 Particle size of the oxygen carrier 111
4-3.2 Concentration of gaseous fuels: H2, CO, and CH4 113
4-3.3 Operating temperature 119
4-3.4 Superficial velocity 123
4-3.5 Complex syngas 127
4-3.6 Redox cycles 132
4-4 Characteristics of oxygen carrier before and after reaction 136
4-4.1 X-ray diffraction (XRD) analysis 136
4-4.2 Scanning electron microscope (SEM) analysis 140
4-4.3 Scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) analysis 146
4-4.4 Mapping analysis 151
4-4.5 Elemental analysis (EA) 155
4-4.6 X-ray photoelectron spectroscope (XPS) analysis 157
4-4.7 Thermogravimetric analysis (TGA) 161
4-5 Kinetics 163
4-6 Mechanism 168
Chapter 5 Conclusion and suggestion 170
5-1 Conclusion 170
5-2 Suggestion 173
Chapter 6 Reference 174
Appendix 189
1. The calculation of theoretical weight loss for conversion 189
2. The numbers of TiO2 in the calcined ilmenite 190
3. The weight of carbon deposition (10% CH4) 191
參考文獻 Adnan, M. A., Mohammed, A. A. A., Binous, H., Razzak, S. A. and Hossain, M. M. (2020). "Ni-Fe bimetallic oxides on La modified Al2O3 as an oxygen carrier for liquid fuel based chemical looping combustion." Fuel 263.

Adánez-Rubio, I., Arjmand, M., Leion, H., Gayán, P., Abad, A., Mattisson, T. and Lyngfelt, A. (2013). "Investigation of Combined Supports for Cu-Based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU)." Energy & Fuels 27(7): 3918-3927.

Adánez-Rubio, I., Gayán, P., Abad, A., García-Labiano, F., de Diego, L. F. and Adánez, J. (2014). "Kinetic analysis of a Cu-based oxygen carrier: Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in Chemical Looping with Oxygen Uncoupling (CLOU)." Chemical Engineering Journal 256: 69-84.

Adánez, J. (2015). 12 - Chemical looping combustion of gaseous fuels. Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture. P. Fennell and B. Anthony, Woodhead Publishing: 255-285.

Adánez, J. and Abad, A. (2019). "Chemical-looping combustion: Status and research needs." Proceedings of the Combustion Institute 37(4): 4303-4317.

Adánez, J., Abad, A., Mendiara, T., Gayán, P., de Diego, L. F. and García-Labiano, F. (2018). "Chemical looping combustion of solid fuels." Progress in Energy and Combustion Science 65: 6-66.

Adánez, J., Cuadrat, A., Abad, A., Gayán, P., de Diego, L. F. and García-Labiano, F. (2010). "Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion." Energy & Fuels 24(2): 1402-1413.

Afandi, N. F., Manap, A., Mahalingam, S. and Danial, A. (2018). "Characterization of iron ore with Al2O3 as oxygen carrier in Chemical Looping Combustion (CLC)." IOP Conference Series: Materials Science and Engineering 380.

Akansu, S. (2004). "Internal combustion engines fueled by natural gas?hydrogen mixtures." International Journal of Hydrogen Energy 29(14): 1527-1539.

Anheden, M. and Svedberg, G. (1998). "Exergy analysis of chemical-looping combustion systems." Energy Conversion and Management 39(16): 1967-1980.

Azis, M. M., Jerndal, E., Leion, H., Mattisson, T. and Lyngfelt, A. (2010). "On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC)." Chemical Engineering Research and Design 88(11): 1505-1514.

Azpiri Solares, R. A., Soares dos Santos, D., Ingram, A. and Wood, J. (2019). "Modelling and parameter estimation of breakthrough curves for amine-modified activated carbons under pre-combustion carbon capture conditions." Fuel 253: 1130-1139.

Bahzad, H., Shah, N., Dowell, N., Boot-Handford, M., Soltani, S., Ho, M. and Fennell, P. (2019). "Development and techno-economic analyses of a novel hydrogen production process via chemical looping." International Journal of Hydrogen Energy 44.

Baowen Wang, Rong Yan, Dong Ho Lee, David Tee Liang, Ying Zheng, Haibo Zhao and Zheng, C. (2008). "Thermodynamic Investigation of Carbon Deposition and Sulfur." Energy & Fuels 22: 1012-1020.

Benincosa, W., Siriwardane, R., Tian, H., Riley, J. and Poston, J. (2020). "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion." Applied Energy 262: 114407.

Brajpuriya, R. and Shripathi, T. (2009). "Investigation of Fe/Al interface as a function of annealing temperature using XPS." Applied surface science 255(12): 6149-6154.

Brenninkmeijer, C. A. M., Rockmann, T., aunlich, M. B., Jockel, P. and Bergamaschi, P. (1999). "Review of progress in isotope studies of atmospheric carbon
monoxide." Chemosphere: Global Change Science 1: 33-52.

Cabello, A., Dueso, C., García-Labiano, F., Gayán, P., Abad, A., de Diego, L. F. and Adánez, J. (2014). "Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit." Fuel 121: 117-125.

Campos, D., Belkouch, J., Hazi, M. and Ould-Dris, A. (2013). "Reactivity Investigation on Iron-Titanium Oxides for a Moving Bed Chemical Looping Combustion Implementation." Advances in Chemical Engineering and Science 03: 47-56.

Chejne, J. C. M. a. F. (2014). "Modeling of Oxidation and Reduction of a Copper-Based Oxygen Carrier." Energy Fuels: 5434-5444.

Chen, H., Zheng, Z., Chen, Z. and Bi, X. T. (2017). "Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study." Powder Technology 316: 410-420.

Chen, L., Bao, J., Kong, L., Combs, M., Nikolic, H. S., Fan, Z. and Liu, K. (2017). "Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion." Applied Energy 197: 40-51.

Chen, L., Yong, S. Z. and Ghoniem, A. F. (2012). "Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling." Progress in Energy and Combustion Science 38(2): 156-214.

Cimino, S., Mancino, G. and Lisi, L. (2019). "Performance and Stability of Metal (Co, Mn, Cu)-Promoted La2O2SO4 Oxygen Carrier for Chemical Looping Combustion of Methane." Catalysts 9(2).

Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T. and Westfall, L. (2016). "International energy outlook 2016 with projections to 2040."US DOE Energy Information Administration (EIA)

Crowe, C. T. (2005). Multiphase flow handbook, CRC press.

Dahl, I. M., Bakken, E., Larring, Y., Spjelkavik, A. I., Håkonsen, S. F. and Blom, R. (2009). "On the development of novel reactor concepts for chemical looping combustion." Energy Procedia 1(1): 1513-1519.

de la Sota, C., Kane, M., Mazorra, J., Lumbreras, J., Youm, I. and Viana, M. (2017). "Intercomparison of methods to estimate black carbon emissions from cookstoves." Sci Total Environ 595: 886-893.

Dueso, C., Izquierdo, M. T., García-Labiano, F., de Diego, L. F., Abad, A., Gayán, P. and Adánez, J. (2012). "Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC)." Applied Catalysis B: Environmental 126: 186-199.

Duncan, B., Logan, J., Bey, I., Megretskaia, I., Yantosca, R., Novelli, P., . . . Rinsland, C. (2007). "Global budget of CO, 1988–1997: Source estimates and validation with a global model." Journal of Geophysical Research: Atmospheres 112(D22).

El-Nahhal, I. M. and El-Ashgar, N. M. (2007). "A review on polysiloxane-immobilized ligand systems: Synthesis, characterization and applications." Journal of Organometallic Chemistry 692(14): 2861-2886.

Elled, A. L., Åmand, L. E. and Steenari, B. M. (2013). "Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels." Fuel 111: 696-708.

Ergun, S. (1952). "Fluid flow through packed columns " Chem.Eng.Prog. 48: 89-94.

Fan, J., Zhu, L., Hong, H., Jiang, Q. and Jin, H. (2017). "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven power technologies for CO2 capture." Energy 119: 1171-1180.

Feng, Y., Wang, N., Guo, X. and Zhang, S. (2020). "Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production." Fuel 262.

García-Labiano, F., de Diego, L. F., Adánez, J., Abad, A. and Gayán, P. (2005). "Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system." Chemical Engineering Science 60(3): 851-862.

Geldart, D. (1973). "Types of Gas Fhidization." Powder Technology 7: (5):285-292

Goroshko, V., Rozenbaum, R. and Todes, O. (1958). "Approximate laws of fluidized bed hydraulics and restrained fall." Izv. Vyssh. Uchebn. Zaved. Neft Gaz, No. i 125.

Graat, P. C. J. and Somers, M. A. J. (1996). "Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra." Applied Surface Science 100-101: 36-40.

Grob, R. L. and Barry, E. F. (2004). MODERN PRACTICE OF GAS CHROMATOGRAPHY. Canada, A JOHN WILEY & SONS, INC. PUBLICATION.

Grubert, E. (2016). "Implicit prioritization in life cycle assessment: text mining and detecting metapatterns in the literature." The International Journal of Life Cycle Assessment 22(2): 148-158.

Guo, M., Cheng, Z., Liu, Y., Qin, L., Goetze, J., Fan, J. A. and Fan, L.-S. (2019). "Cobalt doping modification for enhanced methane conversion at low temperature in chemical looping reforming systems." Catalysis Today.

Gupta, G. S., International Conference on Advances in the Theory of, I. and Steelmaking (2009). International Conference on Advances in the Theory of Ironmaking and Steelmaking (ATIS 2009) : December 09-11, 2009, New Delhi, Allied Publ.

Haibo Zhao, L. L., Baowen Wang, Di Xu, Linlin Jiang, and Chuguang Zheng (2008). "Sol–GelDerived NiO/NiAl2O4 Oxygen Carriers for Chemical-Looping Combustion by Coal Char." Energy Fuels 22: 8.

Hamers, H. P., Romano, M. C., Spallina, V., Chiesa, P., Gallucci, F. and Annaland, M. v. S. (2014). "Comparison on process efficiency for CLC of syngas operated in packed bed and fluidized bed reactors." International Journal of Greenhouse Gas Control 28: 65-78.

Hatanaka, T. and Yoda, Y. (2019). "Attrition of ilmenite ore during consecutive redox cycles in chemical looping combustion." Powder Technology 356: 974-979.

Hosseini, S. Y., Khosravi-Nikou, M. R. and Shariati, A. (2019). "Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides." Chemical Engineering and Processing - Process Intensification 139: 23-33.

IEA (2017). World Energy Outlook 2017, International Energy Agency.

IEA. (2018). "Energy Efficiency 2018."

IEA. (2019). "Global Energy & CO2 Status Report 2019."

IEA (2019). The Role of CO2 Storage. IEA, International Energy Agency.

Ilavsky, J. and Bena, J. (1967). "Determination of minimum fluidization velocity of polydispersed materials (2)." Chemické Zvesti 21(12): 877-&.

IPCC (2014). "Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp."

Ishida, M. and Jin, H. (1996). "A Novel Chemical-Looping Combustor without NOx Formation." Industrial & Engineering Chemistry Research 35(7): 2469-2472.

Ishida, M., Zheng, D. and Akehata, T. (1987). "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis." Energy 12(2): 147-154.

James, S. H. and Nordby, J. J. (2003). Forensic Science: An Introduction to Scientific and Investigative Techniques. New York, CRC Press.

Johansson, M., Mattisson, T. and Lyngfelt, A. (2006). "Investigation of Mn3O4 With Stabilized ZrO2 for Chemical-Looping Combustion." Chemical Engineering Research and Design 84(9): 807-818.

Khakpoor, N., Mostafavi, E., Mahinpey, N. and De la Hoz Siegler, H. (2019). "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion." Energy 169: 329-337.

Kimball, E., Hamers, H. P., Cobden, P., Gallucci, F. and Annaland, M. v. S. (2013). "Operation of fixed-bed chemical looping combustion." Energy Procedia 37: 575-579.

Knoef, H. and Ahrenfeldt, J. (2005). Handbook biomass gasification, BTG biomass technology group The Netherlands.

Kunii, D. and Levenspiel, O. (2013). Fluidization engineering, Elsevier.

Leion, H. (2008). "Capture of CO2 from Solid Fuels Using Chemical-Looping Combustion and Chemical-Looping Oxygen Uncoupling."

Li, F., Luo, S., Sun, Z., Bao, X. and Fan, L.-S. (2011). "Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations." Energy & Environmental Science 4(9).

Lin, C., Qin, W. and Dong, C. (2016). "Reduction effect of α-Fe2O3 on carbon deposition and CO oxidation during chemical-looping combustion." Chemical Engineering Journal 301: 257-265.

Linderholm, C. and Lyngfelt, A. (2015). 14 - Chemical-looping combustion of solid fuels. Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture. P. Fennell and B. Anthony, Woodhead Publishing: 299-326.

Liu, Y.-C., Ku, Y., Tseng, Y., Lee, H.-Y. and Kuo, Y.-L. (2016). "Fabrication of Fe2O3/TiO2 Oxygen Carriers for Chemical Looping Combustion and Hydrogen Generation." Aerosol and Air Quality Research 16: 2023-2032.

Lopez, R., Diaz, M. J. and Gonzalez-Perez, J. A. (2018). "Extra CO2 sequestration following reutilization of biomass ash." Sci Total Environ 625: 1013-1020.

Lu, X., Rahman, R. A., Lu, D. Y., Ridha, F. N., Duchesne, M. A., Tan, Y. and Hughes, R. W. (2016). "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore." Applied Energy 184: 132-139.

Lyngfelt, A. (2014). "Chemical-looping combustion of solid fuels – Status of development." Applied Energy 113: 1869-1873.

Ma, S., Chen, S., Zhu, M., Zhao, Z., Hu, J., Wu, M., . . . Xiang, W. (2019). "Enhanced sintering resistance of Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation using core-shell structure." International Journal of Hydrogen Energy 44(13): 6491-6504.

Ma, Z., Xiao, R. and Chen, L. (2017). "Kinetics of sintering induced surface area decay of iron oxide in the reduction process of chemical looping combustion." Fuel Processing Technology 168: 20-26.

Ma, Z., Zhang, S. and Xiao, R. (2019). "Insights into the relationship between microstructural evolution and deactivation of Al2O3 supported Fe2O3 oxygen carrier in chemical looping combustion." Energy Conversion and Management 188: 429-437.

Martin Seemann and Thunman, H. (2019). Methane synthesis, Substitute Natural Gas from Waste.

Marx-Schubach, T. and Schmitz, G. (2019). "Modeling and simulation of the start-up process of coal fired power plants with post-combustion CO2 capture." International Journal of Greenhouse Gas Control 87: 44-57.

Mattisson, T., Linderholm, C., Jerndal, E. and Lyngfelt, A. (2016). "Enhanced performance of manganese ore as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU) by combination with Ca(OH)2 through spray-drying." Journal of Environmental Chemical Engineering 4(4): 3707-3717.

Mattisson, T., Lyngfelt, A. and Leion, H. (2009). "Chemical-looping with oxygen uncoupling for combustion of solid fuels." International Journal of Greenhouse Gas Control 3(1): 11-19.

Matzen, M., Pinkerton, J., Wang, X. and Demirel, Y. (2017). "Use of natural ores as oxygen carriers in chemical looping combustion: A review." International Journal of Greenhouse Gas Control 65: 1-14.

McCabe, W. L., Smith, J. C. and Harriott, P. (1993). Unit operations of chemical engineering, McGraw-hill New York.

Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L. (2005). "IPCC Special Report on Carbon dioxide Capture and Storage." Policy Stud.

Miller, D. D., Smith, M. and Shekhawat, D. (2020). "Interaction of manganese with aluminosilicate support during high temperature (1100 °C) chemical looping combustion of the Fe-Mn-based oxygen carrier." Fuel 263.

Monazam, E. R., Breault, R. W., Siriwardane, R., Richards, G. and Carpenter, S. (2013). "Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism." Chemical Engineering Journal 232: 478-487.

NASA. (2019). "Global Climate Change Vital Signs of the Planet "

NASA. (2019). "Global Climate Change Vital Signs of the Planet-Sea Level." from https://climate.nasa.gov/vital-signs/sea-level/.

NASA. (2020). "Global Climate Change Vital Signs of the Planet-Carbon Dioxide." from https://climate.nasa.gov/vital-signs/carbon-dioxide/.

Navas-Anguita, Z., García-Gusano, D., Dufour, J. and Iribarren, D. (2019). "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport." Applied Energy.

Nelson, T., van der Watt, J. G., Laudal, D., Feilen, H., Mann, M. and Srinivasachar, S. (2019). "Reactive jet and cyclonic attrition analysis of ilmenite in chemical looping combustion systems." International Journal of Greenhouse Gas Control 91.

NOAA. (2019). "Carbon dioxide levels in atmosphere hit record high in May."

Obama, B. (2017). "The irreversible momentum of clean energy." Science 355(6321): 3.

Oh, J. and Noh, D. (2017). "The reduction kinetics of hematite particles in H2 and CO atmospheres." Fuel 196: 144-153.

Oliverio, S. and Varlet, V. (2020). "New strategy for carbon monoxide poisoning diagnosis: Carboxyhemoglobin (COHb) vs Total Blood Carbon Monoxide (TBCO)." Forensic Sci Int 306: 110063.

Orlenius, J., Lyckfeldt, O., Kasvayee, K. A. and Johander, P. (2012). "Water based processing of LiFePO4/C cathode material for Li-ion batteries utilizing freeze granulation." Journal of Power Sources 213: 119-127.

Pérez-Astray, A., Adánez-Rubio, I., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., . . . Adánez, J. (2019). "Comparative study of fuel-N and tar evolution in chemical looping combustion of biomass under both iG-CLC and CLOU modes." Fuel 236: 598-607.

Park, K. and Rhee, T. S. (2015). "Source characterization of carbon monoxide and ozone over the Northwestern Pacific in summer 2012." Atmospheric Environment 111: 151-160.

Paykani, A., Frouzakis, C. E. and Boulouchos, K. (2019). "Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm." Applied Energy 242: 1712-1724.

Pejjai, B., Reddivari, M. and Kotte, T. R. R. (2020). "Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS." Materials Chemistry and Physics 239.

Qian, J. X., Enakonda, L. R., Wang, W. J., Gary, D., Del-Gallo, P., Basset, J.-M., . . . Zhou, L. (2019). "Optimization of a fluidized bed reactor for methane decomposition over Fe/Al2O3 catalysts: Activity and regeneration studies." International Journal of Hydrogen Energy 44(60): 31700-31711.

Ranganathan, R. V., Jony, B., Fondriest, S. M., Liu, Z., Wang, R. and Uddi, M. (2019). "Plasma-catalysis chemical looping CH4 reforming with water splitting using ceria supported Ni based La-perovskite nano-catalyst." Journal of CO2 Utilization 32: 11-20.

Ridha, F. N., Duchesne, M. A., Lu, X., Lu, D. Y., Filippou, D. and Hughes, R. W. (2016). "Characterization of an ilmenite ore for pressurized chemical looping combustion." Applied Energy 163: 323-333.

Ritchie, H. and Roser, M. (2020). "CO₂ and Greenhouse Gas Emissions."

Ryu, H.-J., Park, Y. C., Lee, S.-Y., Shun, D. and Baek, J.-I. (2017). "Fuel Conversion and CO2 Selectivity Improvement by Adding other Oxygen Carrier for Syngas Chemical Looping Combustor at High Temperature Condition." Energy Procedia 114: 407-413.

Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., . . . Zwiers, F. W. (2012). Changes in Climate Extremes and their Impacts on the Natural Physical Environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. C. B. Field, Q. Dahe, T. F. Stocker and V. Barros. Cambridge, Cambridge University Press: 109-230.

Shi, B., Xu, W., Wu, W. and Kuo, P.-C. (2019). "Techno-economic analysis of oxy-fuel IGCC power plants using integrated intermittent chemical looping air separation." Energy Conversion and Management 195: 290-301.

Skulimowska, A., Di Felice, L., Kamińska-Pietrzak, N., Celińska, A., Pławecka, M., Hercog, J., . . . Aranda, A. (2017). "Chemical looping with oxygen uncoupling (CLOU) and chemical looping combustion (CLC) using copper-enriched oxygen carriers supported on fly ash." Fuel Processing Technology 168: 123-130.

Song, T., Wu, J., Zhang, H. and Shen, L. (2012). "Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal." International Journal of Greenhouse Gas Control 11: 326-336.

Soo, S. L. (1974). "Formation of Bubbles in a Fluidized Bed." Powder Technology 10.

Stobbe E.R. , B. A. d. B., J.W. Geus (1999). "The reduction and oxidation behaviour of manganese oxides." Catalysis Today 47.

Sumi, H., Lee, Y.-H., Muroyama, H., Matsui, T., Kamijo, M., Mimuro, S., . . . Eguchi, K. (2011). "Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells." Journal of Power Sources 196(10): 4451-4457.

Sun, Z., Lu, D. Y., Symonds, R. T. and Hughes, R. W. (2019). "Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers." Chemical Engineering Journal: 123481.

Taler, J., Żyłka, A., Krzywański, J., Czakiert, T., Idziak, K., Kulicki, K., . . . Sobota, T. (2017). "Numerical simulations of fluidization dynamics in a hot model of a CLC process." E3S Web of Conferences 13.

Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y. and Tan, R. R. (2018). "A review of optimization and decision-making models for the planning ofCO2capture, utilization and storage (CCUS) systems." Sustainable Production and Consumption 13: 1-15.

Varma, D. R., Mulay, S. and Chemtob, S. (2015). Carbon Monoxide. Handbook of Toxicology of Chemical Warfare Agents: 267-286.

Veziroğlu, T. N. and Şahi˙n, S. (2008). "21st Century’s energy: Hydrogen energy system." Energy Conversion and Management 49(7): 1820-1831.

Wagner, C. D., Gale, L. H. and Raymond, R. H. (1979). "Two-dimensional chemical state plots: a standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy." Analytical Chemistry 51(4): 466-482.

Wang, B., Moldenhauer, P. and Leion, H. (2020). "Using Mn-Si oxygen carriers supported with CaO or Al2O3 for converting methane and syngas in chemical-looping with oxygen uncoupling (CLOU)." Fuel Processing Technology 201.

Wang, P., Means, N., Howard, B. H., Shekhawat, D. and Berry, D. (2018). "The reactivity of CuO oxygen carrier and coal in Chemical-Looping with Oxygen Uncoupled (CLOU) and In-situ Gasification Chemical-Looping Combustion (iG-CLC)." Fuel 217: 642-649.

Wang, P., Means, N., Shekhawat, D., Berry, D. and Massoudi, M. (2015). "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review." Energies 8(10): 10605-10635.

Wang, S., Li, B., Tang, Y. and He, Y. (2019). "Thermodynamic assessment of membrane-assisted chemical looping reforming of glycerol." Chemical Engineering and Processing - Process Intensification 142.

Wang, S., Yan, L., Zhao, F., Lu, H., Sun, L. and Zhang, Q. (2014). "Numerical Simulation of Hydrogen Production via Chemical Looping Reforming in Interconnected Fluidized Bed Reactor." Industrial & Engineering Chemistry Research 53(11): 4182-4191.

Wang, T. (2017). 1 - An overview of IGCC systems. Integrated Gasification Combined Cycle (IGCC) Technologies. T. Wang and G. Stiegel, Woodhead Publishing: 1-80.

WebElements. (2020). "Carbon: reactions of elements; WebElements, https://www.webelements.com, accessed July 2020."

Wen, C. Y. and Yu, Y. H. (1966). "A generalized method for predicting the minimum fluidization velocity." AIChE journal 12(3): 610-612.

Weyant, J., de la Chesnaye, F. and Blanford, G. (2006). "Overview of EMF-21: Multigas Mitigation and Climate Policy." The Energy Journal Multi-Greenhouse Gas Mitigation and Climate Policy: 1-32.

Wilhelm, D. J., Simbeck, D. R., Karp, A. D. and Dickenson, R. L. (2001). "Syngas production for gas-to-liquids applications: technologies, issues and outlook." Fuel Processing Technology 71(1): 139-148.

Wilson, S. M. W., Kennedy, D. A. and Tezel, F. H. (2020). "Adsorbent screening for CO2/CO separation for applications in syngas production." Separation and Purification Technology 236.

Yamaguchi, D., Tang, L. and Chiang, K. (2017). "Pre-oxidation of natural ilmenite for use as an oxygen carrier in the cyclic methane–steam redox process for hydrogen production." Chemical Engineering Journal 322: 632-645.

Yamashita, T. and Hayes, P. (2008). "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials." Applied Surface Science 254(8): 2441-2449.

Yan, J. and Feng, J.-C. (2018). "Visual special issue: Low carbon development and transformation of cities." Applied Energy 231: A1-A3.

Yu, Z., Yang, Y., Yang, S., Zhang, Q., Zhao, J., Fang, Y., . . . Guan, G. (2019). "Iron-based oxygen carriers in chemical looping conversions: A review." Carbon Resources Conversion 2(1): 23-34.

Zerobin, F., Penthor, S., Bertsch, O. and Pröll, T. (2017). "Fluidized bed reactor design study for pressurized chemical looping combustion of natural gas." Powder Technology 316: 569-577.

Zhao, R., Deng, S., Liu, Y., Zhao, Q., He, J. and Zhao, L. (2017). "Carbon pump: Fundamental theory and applications." Energy 119: 1131-1143.

Zhou, L., Enakonda, L. R., Harb, M., Saih, Y., Aguilar-Tapia, A., Ould-Chikh, S., . . . Basset, J.-M. (2017). "Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials." Applied Catalysis B: Environmental 208: 44-59.

Zhou, Z., Han, L., Nordness, O. and Bollas, G. M. (2015). "Continuous regime of chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) reactivity of CuO oxygen carriers." Applied Catalysis B: Environmental 166-167: 132-144.

朱信、曾明宗 (1991). "煤炭氣化複循環發電機組可行性之研究." 台灣電力公司電力綜合研究所研究計畫期末報告.

李秉鴻 (2019). Study on Chemical Looping Combustion of CO, H2, CH4 Using Fe2O3/TiO2 Oxygen Carrier in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士論文.

梁凱鈞 (2017). Sorption of Carbon Dioxide from Oxy-fuel Comustion by Desulfurization and Water-quenched slags in a Fluidized Bed Reactor, 國立成功大學環境工程學系碩士論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw