進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007201915062500
論文名稱(中文) 縮尺風機在不同偏航角下的發電效率及尾流量測之比較
論文名稱(英文) A wind-tunnel study on the power production and the wake characteristics of a small wind turbine under different yaw conditions
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 羅友廷
研究生(英文) You-Ting Luo
電子信箱 kacz0981z@gmail.com
學號 N96061305
學位類別 碩士
語文別 英文
論文頁數 67頁
口試委員 指導教授-吳毓庭
口試委員-林傳堯
口試委員-鍾光民
口試委員-吳明勳
口試委員-羅元隆
中文關鍵字 葉片元素動量理論  眼鏡蛇探針風速計  水平軸風力發電機  功率輸出  風洞實驗  風洞  風力發電機尾流  偏航角 
英文關鍵字 Blade element momentum theory  Cobra probe anemometer  Horizontal-axis Wind turbine  Power output  Wind-tunnel experiment  Wind tunnel  Wind-turbine wake  Yaw angle 
學科別分類
中文摘要 本論文針對風力發電機的發電效率及尾流特性進行了研究。其研究方法是藉由風洞實驗以檢測縮尺風力渦輪機,過程中使用眼鏡蛇探針風速計來取得風速資料,功率方面則利用風渦輪的發電轉子再接出電導線即可觀測其發電電流值。在實際風力發電場中,下游風渦輪機的效率會受到上游渦輪機的尾流所影響,為了避免該影響,將渦輪機的前後距離拉大是一種方法。本研究將關注另一種方式,即調整上游風機的偏航角,使其的尾流具有偏移效應、避開下游風機的位置,其中本文將探討不同偏航角所對應的尾流偏移與發電功率。在實驗中用了以下獨立變數:風渦輪機的不同偏航角與發電電路中加載不同電阻負載值(這進而影響風渦輪機的葉片轉速)。本研究分了三個case進行討論,(1)在風洞風速為6.1m s-1的流速下,以角度每隔5度由-45到45度的偏航角條件及兩組電阻(22與521歐姆)進行發電效率的實驗、(2)沿襲case1的變數設定並取幾個特徵偏航角進行尾流的量測(角度間隔改為15度),及其(3)承襲case2,取其中的負偏航角的案例並且分別提升入流速度,測試不同風速所帶來的影響。其結果顯示,最大功率輸出出現在無偏航條件下和電阻較低的電路中,最大功率係數約為0.23。發電量隨著渦輪機偏航角的增加而減小,負偏航角條件略微比正偏航角條件快速減小。當偏航角的大小增加到15,30和45度時,無因次化的功率輸出降低到90-96%,68-79%,20-55%。尾流量測結果顯示出,在增大的偏航角條件下尾流速度降減小、速度降區域對下游的延伸提早結束,並且造成尾流有偏移現象,在偏航角-30°至30°之內,尾流的偏移角與偏航角成正比,而在大偏航角(±45°)條件時,尾流偏移不僅不會增大反而減小。另外垂直速度、湍流強度和動量通量與偏航角條件成反比,也就是當偏航角提升其尾流特性愈不明顯。另一方面,尾流特性由負載電路中的電阻值改變,其中電阻值越小,可以獲得明顯的流向速度降、尾流偏轉、垂直速度和湍流強度。最後,入流的風速幾乎不影響(無因次化的)尾流特性,也就是說,包含我們所關注的尾流速度大小、尾流偏移角幾乎只與偏航角有關。總結以上,風渦輪機設置偏航角將使其發電效率下降,然而後方尾流速度將有所提升,並且尾流的偏移現象能使得速度降區域遠離正後方的下游位置,風力發電場的單位面積將能有更大的利用,這些結果或許可以在風力發電場設置時納入考量。
英文摘要 A wind-tunnel experiment was carried out to examine the power generation efficiency of a stand-alone miniature wind turbine and its wake characteristics under different yaw conditions. The yaw conditions involved the variability of yaw angle from -45° to 45° with an angle interval of 5 degrees for power generation measurement under the same freestream inflow velocity of 6.1 m s-1. Two resistors were used in the series circuit to study changes in the blade angular speed and power generation in the different yaw conditions. As expected, the maximum power output appears at the non-yaw condition and in the circuit with a lower resistor, with a maximum power coefficient approximately 0.23. The amount of power generation decreases with the magnitude increase of the turbine yaw angle, with a slightly fast reduction in the negative yaw angle condition. The normalized power output decreases to 90-96%, 68-79%, 20-55% as the magnitude of the yaw angle increases to 15, 30, and 45. The turbine wake characteristics at those yaw angle magnitudes are investigated through collecting the complex wake velocity components with the calibration-free cobra probe. The turbulence statistics showed that the wake velocity deficit is decreased under the increased yaw angle condition, and its deflecting angle is proportional to the yaw condition within the yaw angle -30° to 30°. The other wakes deflecting not only does not increase instead decreases under the large yaw angle (±45°). Also, the vertical velocity, turbulence intensity, and momentum flux are inversely proportional to yaw angle conditions. On the other hand, the wake characteristic is changed by the resistance value in the loaded circuit where the smaller the resistance value can obtain the obvious streamwise velocity deficit, wake deflection, vertical velocity, and turbulence intensity.
論文目次 中文摘要 I
ABSTRACT III
ACKNOWLEDGMENTS V
CONTENTS VII
LIST OF TABLE VIII
LIST OF FIGURES IX
NOMENCLATURE XIII
1. INTRODUCTION 1
2. EXPERIMENTAL EQUIPMENT AND SETUP 6
2.1, OPEN-TYPE WIND TUNNEL 6
2.2, MINIATURE WIND TURBINE MODEL 8
2.3, COBRA PROBE 11
2.4, LASER TACHOMETER 14
2.5, TRAVERSING SYSTEM 16
2.6, WIND PROFILE OF WIND TUNNEL 16
2.7, SAMPLING SENSITIVITY ANALYSIS 18
2.8, EXPERIMENTAL SETUPS 20
3. THEORY AND ANALYSIS METHOD 24
3.1, BLADE ELEMENT MOMENTUM THEORY (BEM) 24
3.2, ELECTROMAGNETIC POWER AND POWER LOSS 31
4. RESULTS AND DISCUSSIONS 32
4.1, CASE 1. THE COMPARISON OF THE POWER OUTPUT 32
4.2, CASE 2. THE COMPARISON OF THE WAKE OF THE TURBINE 40
4.3, CASE 3. THE WAKE OF THE WIND TURBINE WAS COMPARED UNDER THE DIFFERENT INCOMING VELOCITY CONDITION 58
5. CONCLUSIONS 63
6. FUTURE PERSPECTIVE 65
REFERENCES 66
參考文獻 [1] REN21 (renewable pollcy network for the 21st century)
[2] Jacobson, M. Z. and M. A. Delucchi. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials." Energy Policy 39(3): 1154-1169, 2011.
[3] Xi Lu, Michael B. McElroy and Juha Kiviluoma. “Global potential for wind-generated electricity.” PNAS, Cambridge, Oxford Street, 2008.
[4] Simões, T. and A. Estanqueiro. "A new methodology for urban wind resource assessment." Renewable Energy 89: 598-605, 2016.
[5] R. J. Barthelmie, S. T. Frandsen, and M. N. Nielsen. "Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm." Wind Energy 10(6): 517-528, 2007.
[6] Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling. "Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear." Wind Energy Science 3(1): 329-343, 2008.
[7] Adaramola, M. S. and P. Å. Krogstad. "Experimental investigation of wake effects on wind turbine performance." Renewable Energy 36(8): 2078-2086, 2011.
[8] L.J. Vermeer, J.N. Sorensen, and A. Crespo. "Wind turbine wake aerodynamics." Progress in Aerospace Sciences 39(6-7): 467-510, 2003.
[9] Krogstad, P.-Å. and M. S. Adaramola. "Performance and near wake measurements of a model horizontal axis wind turbine." Wind Energy 15(5): 743-756, 2012.
[10] Per-Åge Krogstad, Lars Sætran, and Muyiwa Samuel Adaramola. "“Blind Test 3” calculations of the performance and wake development behind two in-line and offset model wind turbines." Journal of Fluids and Structures 52: 65-80, 2015.
[11] J.F. Ainslie. “Calculating the flowfield in the wake of wind turbines.” Journal of Wind Engineering and Industrial Aerodynamics 27: 213-224, 1988.
[12] Wu, Y.-T. and F. Porté-Agel. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study." Energies 5(12): 5340-5362, 2012.
[13] A J MacLeod, S Barnes, and K G Rados. “Wake effects in tidal current turbine farms.” The Robert Gordon University, Aberdeen, 2002
[14] Heiner Schümanna, Fabio Pierella, and Lars Sætran. "Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel." Energy Procedia 35: 285-296, 2013.
[15] A Jimenez, A Crespo, E Migoya, and J Garcia. "Advances in large-eddy simulation of a wind turbine wake." Journal of Physics: Conference Series 75: 1742-6596, 2007.
[16] J. Whale, C.G. Anderson, R. Bareiss, and S. Wagner. “An experimental and numerical study of the vortex structure in the wake of a wind turbine.” Journal of Wind Engineering 1-21, 2000.
[17] Chamorro, L. P. and F. Porté-Agel. "A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects." Boundary-Layer Meteorology 132(1): 129-149, 2009.
[18] Giacomo Valerio Iungo, Yu-Ting Wu, and Fernando Porte´-Agel. "Field Measurements of Wind Turbine Wakes with Lidars." Journal of Atmospheric and Oceanic Technology 30(2): 274-287, 2013.
[19] Wei Tian, Ahmet Ozbay, and Hui Hu. "An experimental investigation on the aeromechanics and wake interferences of wind turbines sited over complex terrain." Journal of Wind Engineering and Industrial Aerodynamics 172: 379-394, 2018.
[20] Giacomo Valerio Iungo. "Experimental characterization of wind turbine wakes: Wind tunnel tests and wind LiDAR measurements." Journal of Wind Engineering and Industrial Aerodynamics 30(2): 274-287, 2016.
[21] Zhenyu Wang Graduate student and Ahmet Ozbay Graduate student."An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine." Energy 147: 94-109, 2018.
[22] Paul A. Fleming, Pieter M.O. Gebraad, Sang Lee, Jan-Willem van Wingerden, Kathryn Johnson, Matt Churchfield, John Michalakes, Philippe Spalart, and Patrick Moriarty. "Evaluating techniques for redirecting turbine wakes using SOWFA." Renewable Energy 70: 211-218, 2014.
[23] Paul Fleming, Pieter M.O. Gebraad, Sang Lee, Jan-Willem van Wingerden, Kathryn Johnson, Matt Churchfield, John Michalakes, Philippe Spalart and Patrick Moriarty. "Simulation comparison of wake mitigation control strategies for a two-turbine case." Wind Energy 18(12): 2135-2143, 2015.
[24] Paul A. Flemin. “Wind plant system engineering through optimization of layout and yaw control.” Wind Energy 19:329–344, 2016.
[25] DCX 12L Precious Metal Brushe
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw