進階搜尋


下載電子全文  
系統識別號 U0026-2007201821550100
論文名稱(中文) 可壓縮圓形凹槽流實驗研究
論文名稱(英文) An Experimental Study on a compressible Cylindrical cavity Flow
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 黃奕瑄
研究生(英文) Yi-Xuan Huang
學號 P46051458
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-張克勤
共同指導教授-鍾光民
口試委員-黃建民
口試委員-徐子圭
中文關鍵字 可壓縮流  圓形凹槽流  自我維持震盪  壓力螢光感測塗料 
英文關鍵字 Compressible Flow  Cylindrical Cavity  Self-Sustained Oscillation  Pressure sensitive paint 
學科別分類
中文摘要 改善空氣動力特性為飛行器設計的重點。氣流通過凹槽時產生的複雜流動對於高直徑深度比的凹槽會產生力矩,影響凹槽內部物品的投放。而低直徑深度比的凹槽則會因為剪力層撞擊後壁,造成自體共振,影響凹槽周邊結構的安全。對於圓形凹槽流大多數的研究都在不可壓縮流與超音速,為了對於凹槽流流動有更深的了解,在穿音速下不同的流場條件與幾何影響,也需探討。

本研究進行可壓縮凹槽流的實驗研究,馬赫數為0.64-0.83,紊流邊界層厚度分別為7、4mm,圓形凹槽直徑深度比3.22-43.00。實驗運用壓力螢光感測塗料與動態壓力傳感器量測壓力,分析平均值與擾動量,並運用快速傅立葉,將頻譜與Rossiter方程式做比較。

圓形凹槽流其類型分界與矩形凹槽接近。對於凹槽後緣的壓力梯度與壓力擾動量會因為邊界層厚度與深度比上升而減少,且對於凹槽內部體積越大效果越明顯;凹槽後緣的壓力梯度與壓力擾動量亦會因為直徑深度比上升而增加。其次運用螢光壓力感測塗料時發現開放形凹槽流其內部渦流有彎曲的現象。對於震盪頻率,邊界層厚度與深度比效應不顯著。但些微影響Rossiter方程式的參數值。
英文摘要 This study aims to characterize the effect of incoming boundary layer thickness, diameter, depth and Mach number on a compressible, cylindrical cavity flow. The ratio of cavity diameter and depth, D/h, varies from 3.22 to 43.00 and the ratio of boundary layer thickness to depth, δ/h, varies from 0.42 to 7. The results indicate that variation in the value of δ/h affects the amplitude of peak pressure fluctuations, e.g. a decrease in the value of δ/h resulting in an increase in the amplitude of peak pressure fluctuations. The effect of δ/h is more significant on the mean surface pressure distributions for an open cavity, but not for a transitional or a closed cavity. The static pressure near the rear corner for an open cavity decreases when there is an increase in the value of δ/h and the effect on static pressure near the rear corner and peak pressure fluctuations will be more obviously by increasing the cavity volume. The PSP measurements shows that the vortex inside the open cavity is curved in the cross direction. The effect of δ/h on self-sustained oscillating frequency is minimized and there is a minor effect on empirical constants in the Rossiter equation.
論文目次 中文摘要........i
Abstract........ii
誌謝........vi
目錄........vii
表目錄........x
圖目錄........xi
參數表........xiv
第1章 緒論........1
1.1 研究動機........1
1.2 研究目的........1
第2章 文獻回顧........2
2.1 凹槽流分類........2
2.2 凹槽震盪預測與反饋機制........6
2.3 凹槽流邊界層的影響........7
2.4 圓形凹槽流的流動特性........8
2.5 PSP壓力螢光感測塗料........9
第3章 實驗設備與模型........14
3.1 穿音速風洞........14
3.2 實驗模型........15
3.3 實驗條件........21
3.4 PSP螢光感測塗料配方........21
3.5 資料擷取系統........22
3.5.1 壓力量測系統........22
3.5.2 PSP影像擷取系統........23
3.6 數據分析........23
3.6.1 統計分析........23
3.6.2 快速傅立葉轉換........23
3.6.3 PSP螢光壓力校驗曲線........24
第4章 實驗結果分析與解釋........26
4.1 壓力分布........26
4.1.1 D/h對於靜壓分布的影響........26
4.1.2 D/h對於擾動壓力分布的影響........32
4.1.3 δ/h對於靜壓分布的影響........38
4.1.4 δ/h對於擾動壓力分布的影響........42
4.1.5 橫向壓力分佈分析........46
4.2 快速傅立葉轉換分析........53
4.2.1 D/h對於頻譜的影響........53
4.2.2 δ/h對於頻譜的影響........59
4.3 Rossiter mode........59
4.4 PSP壓力螢光感測塗料分析........60
第5章 結論........72
5.1 結果與討論........72
5.2 未來工作........73
REFERENCES........74

參考文獻 Bell, J. H., Schairer, E. T., Hand, L. A., & Mehta, R. D. (2001). Surface pressure measurements using luminescent coatings. Annual Review of Fluid Mechanics, 33(1), 155-206.

Bilanin, A. J., & Covert, E. (1973). Estimation of possible excitation frequencies for shallow rectangular cavities. AIAA, 11(3), 347-351.

Charwat, A. F., Roos, J. N., Dewey, F. C., & Hitz, J. A. (1961). An Investigation of Separated Flows .1. The Pressure Field. Journal of the Aerospace Sciences, 28(6), 457-470. doi:Doi 10.2514/8.9037

Chung, K.-M. (2000). Characteristics of transonic rectangular cavity flows. Journal of Aircraft, 37(3), 463-468.

Chung, K.-M. (2001). Three-dimensional effect on transonic rectangular cavity flows. Experiments in fluids, 30(5), 531-536.

Chung, K.-M. (2003). Characteristics of compressible rectangular cavity flows. Journal of aircraft, 40(1), 137-142.

Chung, K.-M., Lee, K.-H., & Chang, K.-C. (2016). Characteristics of compressible flow over cylindrical cavities. Journal of Aircraft, 53(5), 1565-1567.

Dybenko, I., & Savory, E. (2008). An experimental investigation of turbulent boundary layer flow over surface-mounted circular cavities. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 222(G1), 109-125. doi:10.1243/09544100jaero117

Flaherty, W., Reedy, T. M., Elliott, G. S., Austin, J., Schmit, R. F., & Crafton, J. (2014). Investigation of cavity flow using fast-response pressure-sensitive paint. AIAA Journal, 52(11), 2462-2470.

Gharib, M., & Roshko, A. (1987). The effect of flow oscillations on cavity drag. Journal of Fluid Mechanics, 177, 501-530.

Gloerfelt, X. (2006). Aeroacoustic computations of high-Reynolds number cavity flows on staggered grids. Paper presented at the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference).

Gregory, J., Asai, K., Kameda, M., Liu, T., & Sullivan, J. (2008). A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222(2), 249-290.

H. Heller, H., & B. Bliss, D. (1975). Aerodynamically Induced Pressure Oscillations in Cavities - Physical Mechanisms and Suppression Concepts.

Heller, H. H., Holmes, D. G., & Covert, E. E. (1971). Flow-Induced Pressure Oscillations in Shallow Cavities. Journal of Sound and Vibration, 18(4), 545-&. doi:Doi 10.1016/0022-460x(71)90105-2

Hirahara, H., Kawahashi, M., Khan, M. U., & Hourigan, K. (2007). Experimental investigation of fluid dynamic instability in a transonic cavity flow. Experimental Thermal and Fluid Science, 31(4), 333-347.

Hiwada, M., Kawamura, I., Mabuchi, I., & Kumada, M. (1983). Some Characteristics of Flow Pattern and Heat-Transfer Past a Circular Cylindrical Cavity. Bulletin of the Jsme-Japan Society of Mechanical Engineers, 26(220), 1744-1752. doi:DOI 10.1299/jsme1958.26.1744

Huang, C. Y., Lai, C. M., & Li, J. S. . (2012). Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint. Journal of Microelectromechanical Systems, 21(5), 1090-1097.

Illy, H. (2005). Contrôle de l'écoulement au-dessus d'une cavité en régime transsonique. Ecully, Ecole centrale de Lyon.

Kameda, M., Tezuka, N., Hangai, T., Asai, K., Nakakita, K., & Amao, Y. (2004). Adsorptive pressure-sensitive coatings on porous anodized aluminium. Measurement Science and Technology, 15(3), 489.

Kavandi, J., Callis, J., Gouterman, M., Khalil, G., Wright, D., Green, E., Burns, D., & McLachlan, B. (1990). Luminescent barometry in wind tunnels. Review of Scientific Instruments, 61(11), 3340-3347.

Kegerise, M., Spina, E., & Cattafesta, I., Louis. (1999). An experimental investigation of flow-induced cavity oscillations. Paper presented at the 30th Fluid Dynamics Conference.

Kegerise, M. A., Spina, E. F., Garg, S., & Cattafesta, L. N. (2004). Mode-switching and nonlinear effects in compressible flow over a cavity. Physics of Fluids, 16(3), 678-687. doi:10.1063/1.1643736

Lawson, S. J., & Barakos, G. N. (2011). Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186-216. doi:10.1016/j.paerosci.2010.11.002

Lee, K. H. (2017). An experimental study on compressible cavity flows (PhD thesis), National Cheng Kung University.

Liu, T. (2005). Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library.

Liu, T., Campbell, B. T., Burns, S. P., & Sullivan, J. P. (1997). Temperature-and pressure-sensitive luminescent paints in aerodynamics. Applied Mechanics Reviews, 50(4), 227-246.

Mébarki, Y., Cooper, K., & Reichert, T. M. (2003). Automotive testing using pressure-sensitive paint. Journal of visualization, 6(4), 381-393.

Marsden, O., Bogey, C., & Bailly, C. (2012). Investigation of flow features around shallow round cavities subject to subsonic grazing flow. Physics of Fluids, 24(12), 125107.

Maureen B, T., & EB, P. (1997). Cavity unsteady-pressure measurements at subsonic and transonic speeds.

MCGREGOR, O. W., & White, R. (1970). Drag of rectangular cavities in supersonic and transonic flow including the effects of cavity resonance. AIAA Journal, 8(11), 1959-1964.

Mendoza, D. R. (1997). An analysis of CCD camera noise and its effect on pressure sensitive paint instrumentation system signal-to-noise ratio. Paper presented at the Instrumentation in Aerospace Simulation Facilities, 1997. ICIASF'97 Record., International Congress on.

Miau, J., Cheng, J., Chung, K., & Chou, J. (1998). The effect of surface roughness on the boundary layer transition. Paper presented at the 7th Inter. Symp. in Flow Modeling and Turbulent Measurement, National Cheng Kung University, Oct.

Mironov, D. (2008). Investigation of flow over shallow cavity using wavelet and hibert-huang transform. (unpublished master's thesis).

Mironov, D. (2011). An experimental study of pressure fluctuations generated by an open shallow cavity performed using joint time-frequency techniques of data analysis. Thermophysics and Aeromechanics, 18(3), 369-379.

Murray, R. C., & Elliott, G. S. (2001). Characteristics of the compressible shear layer over a cavity. AIAA Journal, 39(5), 846-856.

Peterson, J. I., & Fitzgerald, R. V. (1980). New technique of surface flow visualization based on oxygen quenching of fluorescence. Review of Scientific Instruments, 51(5), 670-671.

Plentovich, E. B. (1990). Three-dimensional cavity flow fields at subsonic and transonic speeds.

Plentovich, E. B., Stallings Jr, R. L., & Tracy, M. B. (1993). Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results.

Pope, A., & Goin, K. L. (1965). High-speed wind tunnel testing: Wiley.

Puklin, E., Carlson, B., Gouin, S., Costin, C., Green, E., Ponomarev, S., Tanji, H., & Gouterman, M. (2000). Ideality of pressure‐sensitive paint. I. Platinum tetra (pentafluorophenyl) porphine in fluoroacrylic polymer. Journal of Applied Polymer Science, 77(13), 2795-2804.

Quinn, M. K., Yang, L., & Kontis, K. (2011). Pressure-sensitive paint: effect of substrate. Sensors, 11(12), 11649-11663.

Rockwell, D. (1977). Prediction of oscillation frequencies for unstable flow past cavities. Journal of Fluids Engineering, 99(2), 294-299.

Rockwell, D., & Knisely, C. (1979). The organized nature of flow impingement upon a corner. Journal of Fluid Mechanics, 93(3), 413-432.

Rockwell, D., & Knisely, C. (1980). Vortex‐edge interaction: Mechanisms for generating low frequency components. The Physics of Fluids, 23(2), 239-240.

Rockwell, D., & Naudascher, E. (1978). Self-sustaining oscillations of flow past cavities. Journal of Fluids Engineering, 100(2), 152-165.

Roshko, A. (1955). Some measurements of flow in a rectangular cutout. Retrieved from

Roshko, A. (1961). Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 10(3), 345-356.

Rossiter, J. (1960). A preliminary investigation into armament bay buffet at subsonic and transonic speeds. Royal Aircraft Establishment, TM AERO, 679.

Rossiter, J. (1964). Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Retrieved from

Sarohia, V. (1977). Experimental investigation of oscillations in flows over shallow cavities. AIAA Journal, 15(7), 984-991.

Stallings Jr, R. L., & Wilcox Jr, F. J. (1987). Experimental cavity pressure distributions at supersonic speeds.

Verdugo, F. R., Guitton, A., & Camussi, R. . (2012). Experimental investigation of a cylindrical cavity in a low Mach number flow. . Journal of Fluids and Structures, 28, 1-19.

李佳峰. (2002). 應用溫度與壓力感測塗料於穿音速風洞實驗. 成功大學航空太空工程學系學位論文, 1-99.

李佳烜. (2014). 壓力螢光感測技術於微流道內稀薄與可壓縮流場之探討及應用. 清華大學動力機械工程學系學位論文, 1-164.

郭乃維. (2003). 壓力感測塗料校驗及噴流實驗驗證. 成功大學航空太空工程學系學位論文, 1-73.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw