參考文獻 |
Alpaydm, E. (1999). Combined 5× 2 cv F test for comparing supervised classification learning algorithms. Neural Computation, 11(8), 1885-1892.
Bengio, Y. & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research, 5(Sep), 1089-1105.
Bouckaert, R. R. (2003). Choosing between two learning algorithms based on calibrated tests. Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA(ICML-03).
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1923.
Filzmoser, P., Liebmann, B., & Varmuza, K. (2009). Repeated double cross validation. Journal of Chemometrics, 23(4), 160-171.
Grandvalet, Y. & Bengio, Y. (2006). Hypothesis testing for cross-validation. Montreal Universite de Montreal, Operationnelle DdIeR, 1285.
Kim, J. H. (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11), 3735-3745.
Lichman, M. (2013). UCI machine learning repository http://www.ics.uci.edu/~mlearn/MLRepository.html.
Raeder, T., Hoens, T. R., & Chawla, N. V. (2010). Consequences of variability in classifier performance estimates. Proceedings of 2011 IEEE International Conference on Data Mining, Sydney, Australia.
Rodriguez, J. D., Perez, A., & Lozano, J. A. (2010). Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569-575.
Rodriguez, J. D., Perez, A., & Lozano, J. A. (2013). A general framework for the statistical analysis of the sources of variance for classification error estimators. Pattern Recognition, 46(3), 855-864
Santafe, G., Inza, I., & Lozano, J. A. (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44(4), 467-508.
Schmetterer, L. (1974). Introduction to Mathematical Statistics , Springer Science & Business Media.
Simon, R. M., Subramanian, J., Li, M.-C., & Menezes, S. (2011). Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Briefings in Bioinformatics, 12(3), 203-214.
Vanwinckelen, G. & Blockeel, H. (2012). On estimating model accuracy with repeated cross-validation. Proceedings of the 21st Belgian-Dutch Conference on Machine Learning, Ghent, Belgium.
Wang, Y., Li, J., & Li, Y. (2015). Measure for data partitioning in m× 2 cross-validation. Pattern Recognition Letters, 65, 211-217.
Wong, T.-T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9), 2839-2846.
Wang, Y., Li, J., Wang, R, & Jia, H. (2014). Blocked 3× 2 cross-validated t-test for comparing supervised classification learning algorithms. Neural Computation, 26(1), 208-235.
|