進階搜尋


下載電子全文  
系統識別號 U0026-2007201711405000
論文名稱(中文) 多層結構下之界面引致現象:磁鄰近效應與自旋霍爾磁阻之研究
論文名稱(英文) Studies of Interface Induced Phenomena: Magnetic Proximity effect and Spin Hall Magnetoresistance
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 105
學期 2
出版年 106
研究生(中文) 黃舜漁
研究生(英文) Shun-Yu Huang
學號 L28001054
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-黃榮俊
召集委員-陳宜君
召集委員-吳宗霖
口試委員-林克偉
口試委員-吳仲卿
中文關鍵字 磁鄰近效應  自旋霍爾磁阻  脈衝雷射鍍膜系統  分子束磊晶系統 
英文關鍵字 magnetic proximity effect  spin Hall magnetoresistance  pulsed laser deposition  molecule beam epitaxy 
學科別分類
中文摘要 在本論文中,我們主要分成兩個部分,磁鄰近效應與自旋霍爾磁阻。在第一部分中,我們利用分子束磊晶系統(molecular beam epitaxy, MBE)和脈衝雷射鍍膜系統(pulsed laser deposition, PLD)所成長的(Bi1-xSbx)2Se3/CoFe2O4 (CFO) 雙層結構系統來做為磁鄰近效應的研究。從相關的磁阻量測結果中,我們發現弱局域化(weak anti-localization, WAL)會被有效的抑制。且透過HLN公式的擬合可以得到表面態的能隙有被打開的現象。而在不同垂直磁場下之變溫電阻的結果中發現表面態能隙會隨外加場增加有繼續打開的情況。這結果良好的說明了不論在高低磁場下CFO皆能有效的引致拓樸絕緣體的界面層的磁化效應。這個雙層結構的磁鄰近效應也可幫助其拓樸絕緣體相關的應用與前瞻研究找出新的方向。另一方面,在第二部分中,我們利用Pt/(NiZn)Fe2O4 (NZFO) 與 CoFe/Pt/NZFO等多層系統樣品來做自旋霍爾磁阻的研究。首先,在Pt/NZFO的角度相關磁阻結果中透過公式擬合得到其雙層結構的自旋霍爾角(θ_sh)與自旋擴散長度λ_sd分別為0.0705與0.85奈米。相較於文獻中Pt/YIG的結果,我們的結果有明顯的提升。另一方面,CoFe所形成的三層結構(CoFe/Pt/NZFO)相較於Pt/NZFO與CoFe/Pt可以有效的放大自旋霍爾磁阻的比例達70%,而其可能原因來自於額外的自旋電流注入。
英文摘要 In this thesis, we separate into two parts: magnetic proximity effect and spin Hall magnetoresistance. In the first part, we investigated the proximity effect in topological insulator (TI) and magnetic insulator bilayer system. (Bi1-xSbx)2Se3/CoFe2O4 (CFO) heterostructure was fabricated using molecular beam epitaxy and pulsed laser deposition system respectively. As revealed from the magnetoresistance measurement, the weak anti-localization (WAL) is strongly suppressed by proximity effect in (Bi1-xSbx)2Se3/CFO interface. Modified Hikama-Larkin-Nagaoka equation was used to fit the WAL results so that the size of surface state gap can be extracted successfully. The temperature-dependent resistance of the heterostructures at small and large perpendicular magnetic fields were also measured and analyzed. The results indicate that the surface band gap can be induced in TI and continuously enlarged up to 9T, indicating the gradual alignment of the magnetic moment in CFO under perpendicular magnetic field. The approaches and results accommodated in this work show that CFO can effectively magnetize (Bi1-xSbx)2Se3 and the heterostructures are promising for TI-based spintronic device applications. Meanwhile, in the second part, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0705 and 0.85 nm, respectively, can be fitted by changing the Pt thickness in the SMR equation. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y3Fe5O12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.
論文目次 Abstract III
摘要 V
Acknowledgements VI
Contents VII
List of Table X
List of Figures XI
Chapter 1. Introduction and Principle Theory 1
1.1 Introduction 1
1.2 History and characteristics of TIs 2
1.3 The characteristics of CFO. 13
1.4 Why we choose the magnetic proximity effect? 15
1.5 Literature review: proximity effect in TI/MI bilayers 17
1.6 Motivation. 22
Chapter 2. Experimental equipment and principles 24
2.1 Pulsed laser deposition (PLD) 24
2.1.1 The fundamental of PLD 25
2.1.2 Advantage of PLD 27
2.1.3 Our PLD system 27
2.2 Molecular beam epitaxy (MBE) 30
2.2.1 The fundamental of MBE 31
2.2.2 Evaporators 32
2.2.3 MBE system 34
2.3 X-ray diffraction (XRD) 35
2.4 Atomic force microscopy (AFM) 36
2.5 Physical property measurement system (PPMS) 38
Chapter 3 Sample preparation and experiment methods 39
3.1 Experiment flow 39
3.2 The detail growth condition and steps of PLD and MBE 40
3.3 Device preparation 41
3.4 Resistivity and Hall resistance measurement 43
3.5 PPMS and measurement condition 43
Chapter 4 Result and discussion 45
4.1 Structure result and analysis 45
4.2 Electro-transport properties of thickness dependent result 49
4.3 Electro-transport of Sb doped-dependent result 52
4.4 Sb doped dependent MC result and modified HLN equation fitting 55
4.5 Analysis of temperature dependent resistivity with different magnetic field 59
Chapter 5 Spin Hall magnetoresistance (SMR) 63
5.1 Introduction of SMR 63
5.2 Motivation 65
5.3 Experiment method 66
5.4 Result and discussion 67
Chapter 6 Conclusion 76
Reference 77

參考文獻 [1] J.E. Moore, The birth of topological insulators, Nature, 464 (2010) 194-198.
[2] X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Reviews of Modern Physics, 83 (2011) 1057.
[3] Y.M. Tsuneya Ando, Yasutada Uemura, Theory of Hall Effect in a Two-Dimensional Electron System, Journal of the Physical Society of Japan, 39 (1975) 279-288.
[4] K.v. Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, 45 (1980) 494-497.
[5] C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene, Physical review letters, 95 (2005) 226801.
[6] B.A. Bernevig, S.-C. Zhang, Quantum spin Hall effect, Physical Review Letters, 96 (2006) 106802.
[7] J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures, Physical Review B, 75 (2007) 121306.
[8] B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, 314 (2006) 1757-1761.
[9] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science, 318 (2007) 766-770.
[10] L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions, Physical Review Letters, 98 (2007) 106803.
[11] L. Fu, C.L. Kane, Topological insulators with inversion symmetry, Physical Review B, 76 (2007) 045302.
[12] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R. Cava, M.Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature, 452 (2008) 970-974.
[13] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature physics, 5 (2009) 438-442.
[14] Y. Chen, J. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L. Qi, H. Zhang, D. Lu, X. Dai, Z. Fang, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science, 325 (2009) 178-181.
[15] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, J. Osterwalder, L. Patthey, A. Fedorov, H. Lin, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3, Physical review letters, 103 (2009) 146401.
[16] F.D.M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Physical Review Letters, 61 (1988) 2015-2018.
[17] M.Z. Hasan, C.L. Kane, Colloquium: topological insulators, Reviews of Modern Physics, 82 (2010) 3045.
[18] C.L. Kane, E.J. Mele, A New Spin on the Insulating State, Science, 314 (2006) 1692-1693.
[19] C.L. Kane, E.J. Mele, Z 2 topological order and the quantum spin Hall effect, Physical review letters, 95 (2005) 146802.
[20] 范姜群名, 國立成功大學碩士論文, (2016).
[21] H.-Z. Lu, S.-Q. Shen, Weak localization and weak anti-localization in topological insulators, in: SPIE NanoScience+ Engineering, International Society for Optics and Photonics, 2014, pp. 91672E-91672E-91611.
[22] H.-Z. Lu, S.-Q. Shen, Finite-temperature conductivity and magnetoconductivity of topological insulators, Physical review letters, 112 (2014) 146601.
[23] S. Hikami, A.I. Larkin, Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Progress of Theoretical Physics, 63 (1980) 707-710.
[24] H.-Z. Lu, S.-Q. Shen, Weak localization and weak anti-localization in topological insulators, in: Proceedings of SPIE, San Diego, California, US, 2014, pp. 91672E-91611.
[25] Y. Chen, J.-H. Chu, J. Analytis, Z. Liu, K. Igarashi, H.-H. Kuo, X. Qi, S.-K. Mo, R. Moore, D. Lu, Massive Dirac fermion on the surface of a magnetically doped topological insulator, Science, 329 (2010) 659-662.
[26] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, 340 (2013) 167-170.
[27] Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.-T. Chang, M. Montazeri, Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure, Nature materials, 13 (2014) 699-704.
[28] V.G. Harris, N.C. Koon, C.M. Williams, Q. Zhang, M. Abe, J.P. Kirkland, Cation distribution in NiZn‐ferrite films via extended x‐ray absorption fine structure, Applied Physics Letters, 68 (1996) 2082-2084.
[29] W.F. Pong, Y.K. Chang, M.H. Su, P.K. Tseng, H.J. Lin, G.H. Ho, K.L. Tsang, C.T. Chen, Magnetic orientation of Ni in Zn-Ni ferrites studied by soft-x-ray magnetic circular dichroism, Physical Review B, 55 (1997) 11409-11413.
[30] T. Yamanaka, M. Okita, Magnetic properties of the Fe2SiO4-Fe3O4 spinel solid solutions, Phys Chem Min, 28 (2001) 102-109.
[31] J.A. Moyer, C.A.F. Vaz, E. Negusse, D.A. Arena, V.E. Henrich, Controlling the electronic structure of Co${}_{1-x}{mathrm{Fe}}_{2+x}$O${}_{4}$ thin films through iron doping, Physical Review B, 83 (2011) 035121.
[32] L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Monolayer Assembly of Ferrimagnetic CoxFe3–xO4 Nanocubes for Magnetic Recording, Nano Letters, 14 (2014) 3395-3399.
[33] N. Momin, A. Deshmukh, S. Radha, Synthesis and characterization of CoFe 2 O 4 & NiFe 2 O 4 magnetic nanoparticles for various biomedical applications: cell viability and cell death evaluations, Journal of Nano Research, 34 (2015).
[34] T. Shailja, P. Ram, R.J. Choudhary, D.M. Phase, Oriented growth of Fe 3 O 4 thin film on crystalline and amorphous substrates by pulsed laser deposition, Journal of Physics D: Applied Physics, 40 (2007) 4943.
[35] J. Yin, J. Ding, B. Liu, W. Yongchao, Y. Jiabao, C. Jingsheng, M. Xiangshui, High coercivity Co-ferrite thin films on SiO2 (100) substrate prepared by sputtering and PLD, Magnetics, IEEE Transactions on, 41 (2005) 3904-3906.
[36] J.H. Yin, J. Ding, J.S. Chen, X.S. Miao, Magnetic properties of Co-ferrite thin films prepared by PLD with in situ heating and post-annealing, Journal of Magnetism and Magnetic Materials, 303 (2006) e387-e391.
[37] G. Shemer, E. Tirosh, T. Livneh, G. Markovich, Tuning a Colloidal Synthesis to Control Co2+ Doping in Ferrite Nanocrystals, The Journal of Physical Chemistry C, 111 (2007) 14334-14338.
[38] D. Sharma, N. Khare, Tuning of optical bandgap and magnetization of CoFe2O4 thin films, Applied Physics Letters, 105 (2014) 032404.
[39] X. Chen, X. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding, R.-W. Li, Nanoscale Magnetization Reversal Caused by Electric Field-Induced Ion Migration and Redistribution in Cobalt Ferrite Thin Films, ACS Nano, 9 (2015) 4210-4218.
[40] P. Wei, F. Katmis, B.A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, J.S. Moodera, Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators, Physical Review Letters, 110 (2013) 186807.
[41] Q.I. Yang, M. Dolev, L. Zhang, J. Zhao, A.D. Fried, E. Schemm, M. Liu, A. Palevski, A.F. Marshall, S.H. Risbud, Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi 2 Se 3-EuS) interface, Physical Review B, 88 (2013) 081407.
[42] A. Kandala, A. Richardella, D. Rench, D. Zhang, T. Flanagan, N. Samarth, Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices, Applied Physics Letters, 103 (2013) 202409.
[43] M. Lang, M. Montazeri, M.C. Onbasli, X. Kou, Y. Fan, P. Upadhyaya, K. Yao, F. Liu, Y. Jiang, W. Jiang, Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure, Nano letters, 14 (2014) 3459-3465.
[44] Z. Jiang, C.-Z. Chang, C. Tang, P. Wei, J.S. Moodera, J. Shi, Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach, Nano letters, 15 (2015) 5835-5840.
[45] F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, A high-temperature ferromagnetic topological insulating phase by proximity coupling, Nature, (2016).
[46] Y. Zhang, C.-Z. Chang, K. He, L.-L. Wang, X. Chen, J.-F. Jia, X.-C. Ma, Q.-K. Xue, Doping effects of Sb and Pb in epitaxial topological insulator Bi2Se3 thin films: An in situ angle-resolved photoemission spectroscopy study, Applied Physics Letters, 97 (2010) 194102.
[47] T. Plecháček, J. Navratil, J. Horak, Free Current Carrier Concentration and Point Defects in Bi 2− x Sb x Se 3 Crystals, Journal of Solid State Chemistry, 165 (2002) 35-41.
[48] G.K. Hubler, Pulsed laser deposition, MRS Bulletin, 17 (1992) 26-29.
[49] D.B. Chrisey, G.K. Hubler, Pulsed laser deposition of thin films, (1994).
[50] R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials, John Wiley & Sons, 2007.
[51] 李虹霖, 國立成功大學碩士論文, (2016).
[52] 陳姿瑾, 國立成功大學碩士論文, (2016).
[53] 戴貝珊, 國立成功大學碩士論文, (2013).
[54] 陳品卉, 國立成功大學碩士論文, (2013).
[55] J.C.A. Huang, J. C. A. Huang, PhD. Thesis, University of Illionis (1992).
[56] A.Y. Cho, J. Arthur, Molecular beam epitaxy, Progress in solid state chemistry, 10 (1975) 157-191.
[57] M.A. Herman, H. Sitter, Molecular beam epitaxy: fundamentals and current status, Springer Science & Business Media, 2012.
[58] G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy, Applied physics letters, 53 (1988) 1045-1047.
[59] J. Liao, Y. Ou, X. Feng, S. Yang, C. Lin, W. Yang, K. Wu, K. He, X. Ma, Q.-K. Xue, Y. Li, Observation of Anderson Localization in Ultrathin Films of Three-Dimensional Topological Insulators, Physical Review Letters, 114 (2015) 216601.
[60] Y.H. Liu, C.W. Chong, J.L. Jheng, S.Y. Huang, J.C.A. Huang, Z. Li, H. Qiu, S.M. Huang, V.V. Marchenkov, Gate-tunable coherent transport in Se-capped Bi2Se3 grown on amorphous SiO2/Si, Applied Physics Letters, 107 (2015) 012106.
[61] H.-Z. Lu, S.-Q. Shen, Weak localization of bulk channels in topological insulator thin films, Physical Review B, 84 (2011) 125138.
[62] G. Zheng, N. Wang, J. Yang, W. Wang, H. Du, W. Ning, Z. Yang, H.-Z. Lu, Y. Zhang, M. Tian, Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19, Scientific Reports, 6 (2016) 21334.
[63] M. Bianchi, D. Guan, S. Bao, J. Mi, B.B. Iversen, P.D.C. King, P. Hofmann, Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3, Nat Commun, 1 (2010) 128.
[64] M. Brahlek, N. Koirala, M. Salehi, N. Bansal, S. Oh, Emergence of Decoupled Surface Transport Channels in Bulk Insulating ${mathrm{Bi}}_{2}{mathrm{Se}}_{3}$ Thin Films, Physical Review Letters, 113 (2014) 026801.
[65] Y.H. Liu, C.W. Chong, W.C. Chen, J.C.A. Huang, C.-M. Cheng, K.-D. Tsuei, Z. Li, H. Qiu, V.V. Marchenkov, Robust topological insulator surface state in MBE grown (Bi1-xSbx)2Se3, arXiv, (2016) 1611.08395.
[66] Y. Jing, S. Huang, K. Zhang, J. Wu, Y. Guo, H. Peng, Z. Liu, H. Xu, Weak antilocalization and electron–electron interaction in coupled multiple-channel transport in a Bi 2 Se 3 thin film, Nanoscale, 8 (2016) 1879-1885.
[67] W.J. Wang, K.H. Gao, Z.Q. Li, Thickness-dependent transport channels in topological insulator Bi2Se3 thin films grown by magnetron sputtering, Scientific Reports, 6 (2016) 25291.
[68] A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, New perspectives for Rashba spin-orbit coupling, Nat Mater, 14 (2015) 871-882.
[69] G. Dresselhaus, Spin-Orbit Coupling Effects in Zinc Blende Structures, Physical Review, 100 (1955) 580-586.
[70] Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the Spin Hall Effect in Semiconductors, Science, 306 (2004) 1910-1913.
[71] J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System, Physical Review Letters, 94 (2005) 047204.
[72] J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Spin Hall effects, Reviews of Modern Physics, 87 (2015) 1213-1260.
[73] O. Mosendz, J. Pearson, F. Fradin, G. Bauer, S. Bader, A. Hoffmann, Quantifying spin Hall angles from spin pumping: Experiments and theory, Physical review letters, 104 (2010) 046601.
[74] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Physical Review B, 66 (2002) 224403.
[75] D.C. Ralph, M.D. Stiles, Spin transfer torques, Journal of Magnetism and Magnetic Materials, 320 (2008) 1190-1216.
[76] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, E. Saitoh, Spin Seebeck insulator, Nat Mater, 9 (2010) 894-897.
[77] G.E.W. Bauer, E. Saitoh, B.J. van Wees, Spin caloritronics, Nat Mater, 11 (2012) 391-399.
[78] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance, Physical Review B, 87 (2013) 144411.
[79] H. Nakayama, M. Althammer, Y.T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, E. Saitoh, Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect, Physical Review Letters, 110 (2013) 206601.
[80] C. Hahn, G. de Loubens, O. Klein, M. Viret, V.V. Naletov, J. Ben Youssef, Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta, Physical Review B, 87 (2013) 174417.
[81] T. Lin, C. Tang, H.M. Alyahayaei, J. Shi, Experimental Investigation of the Nature of the Magnetoresistance Effects in Pd-YIG Hybrid Structures, Physical Review Letters, 113 (2014) 037203.
[82] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T. Goennenwein, E. Saitoh, G.E. Bauer, Theory of spin Hall magnetoresistance (SMR) and related phenomena, Journal of Physics: Condensed Matter, 28 (2016) 103004.
[83] L. Ma, H.-A. Zhou, L. Wang, X.-L. Fan, W.-J. Fan, D.-S. Xue, K. Xia, Z. Wang, R.-Q. Wu, G.-Y. Guo, L. Sun, X. Wang, X.-M. Cheng, S.-M. Zhou, Spin Orbit Coupling Controlled Spin Pumping and Spin Hall Magnetoresistance Effects, Advanced Electronic Materials, 2 (2016) 10.
[84] N. Vlietstra, J. Shan, V. Castel, B.J. van Wees, J. Ben Youssef, Spin-Hall magnetoresistance in platinum on yttrium iron garnet: Dependence on platinum thickness and in-plane/out-of-plane magnetization, Physical Review B, 87 (2013) 184421.
[85] Z. Ding, B.L. Chen, J.H. Liang, J. Zhu, J.X. Li, Y.Z. Wu, Spin Hall magnetoresistance in $mathrm{Pt}/{mathrm{Fe}}_{3}{mathrm{O}}_{4}$ thin films at room temperature, Physical Review B, 90 (2014) 134424.
[86] M. Isasa, A. Bedoya-Pinto, S. Vélez, F. Golmar, F. Sánchez, L.E. Hueso, J. Fontcuberta, F. Casanova, Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects, Applied Physics Letters, 105 (2014) 142402.
[87] S. Wang, L. Zou, X. Zhang, J. Cai, S. Wang, B. Shen, J. Sun, Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure, Nanoscale, 7 (2015) 17812-17819.
[88] J. Kim, P. Sheng, S. Takahashi, S. Mitani, M. Hayashi, Spin Hall Magnetoresistance in Metallic Bilayers, Physical Review Letters, 116 (2016) 097201.
[89] S. Cho, S.-h.C. Baek, Y. Jo, B.-G. Park, Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures, arXiv preprint arXiv:1505.00899, (2015).
[90] Y. Yang, Y. Xu, K. Yao, Y. Wu, Thickness dependence of spin Hall magnetoresistance in FeMn/Pt bilayers, AIP Advances, 6 (2016) 065203.
[91] Y.-q. Zhang, H.-r. Fu, N.-y. Sun, W.-r. Che, D. Ding, J. Qin, C.-y. You, R. Shan, Z.-g. Zhu, Spin Hall magnetoresistance in an ultrathin Co2FeAl system, Journal of Magnetism and Magnetic Materials, 411 (2016) 103-107.
[92] K. Meng, J. Xiao, Y. Wu, J. Miao, X. Xu, J. Zhao, Y. Jiang, Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling, Sci Rep, 6 (2016) 20522.
[93] M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Huebl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.-M. Schmalhorst, G. Reiss, L. Shen, A. Gupta, Y.-T. Chen, G.E.W. Bauer, E. Saitoh, S.T.B. Goennenwein, Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids, Physical Review B, 87 (2013) 224401.
[94] S.R. Marmion, M. Ali, M. McLaren, D.A. Williams, B.J. Hickey, Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films, Physical Review B, 89 (2014) 220404.
[95] Y.Q. Zhang, N.Y. Sun, W.R. Che, X.L. Li, J.W. Zhang, R. Shan, Z.G. Zhu, G. Su, Manipulating effective spin orbit coupling based on proximity effect in magnetic bilayers, Applied Physics Letters, 107 (2015) 082404.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw