進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007201621571200
論文名稱(中文) 以熱注入法合成CuSbSe2晶體與其特性之研究
論文名稱(英文) Chemical synthesis and characterization of CuSbSe2 crystallites using a hot injection method
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 凃叡寰
研究生(英文) Jui-Huan Tu
學號 N46034138
學位類別 碩士
語文別 中文
論文頁數 48頁
口試委員 指導教授-向性一
口試委員-吳毓純
口試委員-曾文甲
中文關鍵字 CuSbSe2  熱注入法  十八烷基胺  三乙二醇 
英文關鍵字 copper antimony selenide  hot injection method  triethylenetetramine 
學科別分類
中文摘要 本研究以熱注入法製備CuSbSe2晶體,首先於此製程下瞭解以十八烷基胺和三乙二醇等溶劑對於合成CuSbSe2晶體之影響,結果顯示以十八烷基胺為反應溶劑時,其易與陽離子反應,先形成氧化銻。而使用三乙二醇為反應溶劑時,當反應時間足夠時,即可獲得CuSbSe2之單一相。其生成過程為Cu3SbSe4因三乙烯四胺將其中之Cu2+還原至Cu+,轉變成CuSbSe2,釋放出多餘之銅離子與硒離子,銅離子會在Sb2Se3表面進行成核反應,最終變成CuSbSe2。當反應溫度為190 ℃時,未能提供足夠能量使三乙烯四胺發揮其還原之效果;當三乙烯四胺之添加量過少時,只能使Cu3SbSe4中Cu2+部分還原至Cu+,而添加量過多時,則還原性過高,而生成金屬銻。
英文摘要 In this study, a novel and facile hot injection method for the synthesis of single phase CuSbSe2 crystallites was developed by using low toxic triethylene glycol (TEG) as both the solvent and reducing agent and triethylenetetramine (TETA) as co-reducing agent. The effects of the amounts of TETA addition and reaction temperatures on the phase development were investigated. The crystalline structures, morphologies, chemical compositions and optical characterization of the synthesized products were investigated using XRD, TEM, EDS, XPS, and UV–Vis-NIR. A single phase CuSbSe2 crystallites can be obtained by using triethylene glycol as the solvent and reducing agent and triethylenetetramine as co-reducing agent. TETA addition plays a key role in determining the final phase. The presence of the intermediate phase, Cu3SbSe4 phase could be due to the existence of Cu2+, resulting from the insufficient reducibility in the solution. A sufficient amount of TETA can facilitate the reduction of Cu2+ into Cu+, leading to the preformed Cu3SbSe4 phase dissolved and reacted with Sb2Se3 to form CuSbSe2. Rietveld refinement of X-ray diffraction patterns confirmed formation of single CuSbSe2 phase without any second phase. The obtained CuSbSe2 phase had a direct band gap with the band gap value of 1.06 eV.
論文目次 第一章 緒論 1
1-1前言 1
1-2研究目的 3
1-3研究方法 5
第二章 理論基礎 6
2-1薄膜型太陽能電池之基本構造 6
2-2 CuSbSe2之簡介 8
2-3晶粒生成與成長機制 9
2-3-1 Ostwald ripening 11
2-3-2 Oriented attachment與Mesocrystals 12
2-4 CuSbSe2晶體之製備 14
2-4-1固態反應法 15
2-4-2化學沉積法 15
2-4-3熱分解法 16
第三章 實驗步驟與分析方法 19
3-1實驗藥品與裝置 19
3-2 CuSbSe2晶體合成之實驗步驟 20
3-2-1以十八烷基胺為溶劑合成CuSbSe2晶體 20
3-2-2以三乙二醇為溶劑合成CuSbSe2晶體 21
3-2-3改變不同實驗參數合成CuSbSe2晶體 22
3-3實驗分析方法 23
3-3-1 X光繞射儀 24
3-3-2掃描式電子顯微鏡 25
3-3-3穿透式電子顯微鏡 25
3-3-4 X光光電子能譜儀 25
3-3-5紫外光-可見光-近紅外光分光光譜儀 26
第四章 以熱注入法製備CuSbSe2晶體之生長機制研究 27
4-1以熱注入法製備CuSbSe2晶體之結果 27
4-1-1以十八烷基胺為溶劑製備CuSbSe2晶體之相鑑定 27
4-1-2以三乙二醇為溶劑製備CuSbSe2晶體之相鑑定 29
4-1-3以三乙二醇為溶劑製備CuSbSe2晶體之微結構分析 30
4-1-4以三乙二醇為溶劑製備CuSbSe2晶體之X光光電子能譜分析 35
4-1-5以三乙二醇為溶劑製備CuSbSe2晶體之反應機制 36
4-1-6以三乙二醇為溶劑製備CuSbSe2晶體之晶格參數計算 37
4-1-7以三乙二醇為溶劑製備CuSbSe2晶體之吸收圖譜 39
4-2以熱注入法製備CuSbSe2晶體之不同實驗參數探討 40
4-2-1不同之反應溫度對於製備CuSbSe2晶體之影響 40
4-2-2不同還原劑三乙烯四胺之添加量對於製備CuSbSe2晶體之影響 41
第五章 結論 42
參考文獻 43

參考文獻 1. 林明獻,太陽電池技術入門,全華圖書股份有限公司,中華民國,2007年。
2. 戴寶通、鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,中華民國,2008年。
3. N. Alia A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B. Ul Haq, Y.Q. Fu, “Advances in nanostructured thin film materials for solar cell applications,” Renewable and Sustainable Energy Review, 59, 726-737, 2016.
4. Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,” Prog. Photovolt: Res Appl., 7, 311–316, 1999.
5. L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, “Inverse Design of High Absorption Thin-Film Photovoltaic Materials,” Adv. Energy Mater., 3, 43-48, 2013.
6. M. Yuan, D. B. Mitzi, W. Liu, A. J. Kellock, S. J. Chey, and V. R. Deline, “Optimization of CIGS-Based PV Device through Antimony Doping,” Chem. Mater., 22, 285-287, 2010.
7. K. Takei, T. Maeda, T. Wada, “Crystallographic and optical properties of CuSbS2 and CuSb(S1-xSex)2 solid solution,” Thin Solid Films, 582, 263-268, 2015.
8. C. Yang, Y. Wang, S. Li, D. Wan, F. Huang, “CuSbSe2-assisted sintering of CuInSe2 at low temperature,” J. Mater. Sci., 47, 7085–7089, 2012.
9. A. Zyoud, R. S. Al-Kerm, R. S. Al-Kerm, W. Mansur, M. H.S. Helal, D. H. Park, G. Campet, N. Sabli, H. S. Hilal, “High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices,” Electrochim. Acta, 174, 472-479, 2015.
10. T. Y. Ko, K. W. Sun, “Optical and electrical properties of single Sb2Se3 nanorod,” J. Lumines., 129, 1747-1749, 2009.
11. T. Hurmaa, S. Kose, “XRD Raman analysis and optical properties of CuS nanostructured film,” Optik, 127, 6000-6006, 2016.
12. Y. Hashimoto, T. Satoh, S. Shimakawa, and T. Negami, “High efficiency CIGS solar cell on flexible stainless steel,” 3rd World Conference on Photovoltaic Enero Convemion, Japan, 574-577, 2003.
13. S. J. Fonash, “Solar Cell Device Physics,” Academic Press Inc., New York, 1981.
14. Nakada T, Mizutani M. “18% Efficiency Cd-Free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Japanese Journal of Applied Physics: Part 2 Letters 41, L165–L167, 2002.
15. H. Hahn, G. Frank, W. Klingler, A. D. Meyer and G. Störger, “Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur,” Z. Anorg. Allg. Chem., 271, 153–170, 1953.
16. A. Nisser, “Gallium as an Isovalent Substitution in CuInS2 Absorber Layers for Photovoltaic Applications, Freien Universität Berlin,” Ph. D dissertation, 2011.
17. D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson, and D. O. Scanlon, “Geometry, Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials ?,” J. Phys. Chem., C116, 7334−7340, 2012.
18. A. Rabhi, M. A. Kanzari, B. Rezig, “Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method,” Thin Solid Films, 517(7), 2477-2480, 2009.
19. C. Garza, S. Shaji, A. Arato, E. Perez Tijerina, G. Alan Castillo, T. K. Das Roy, B. Krishnan, “p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3,” Sol. Energy Mater. Sol. Cells, 95, 2001–2005, 2011.
20. Green M A. “Solar cells: operating principles, technology, and system applications, Englewood Cliffs,” NJ, Prentice-Hall, Inc., 288, 1982.
21. 劉智生、洪儒生,太陽能電池的高效率化,科學發展439期,2009年。
22. D. Li and X. Y. Qina, “Thermoelectric properties of CuSbSe2 and its dope compounds by Ti and Pb at low temperatures from 5 to 310 K,” J. Appl. Phys., 100, 023713, 2006.
23. L. I. Soliman, A. M. ABO EL SOAD, H. A. Zayed and S. A. EL Ghfar, “Structural and electrical properties of CuSbTe2, CuSbSe2 and CuSbS2 chalcogenide this films,” J. Exp. Theor. Phys. FIZIKA A, 11(4), 139–152, 2002.
24. D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, “Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors,” Thin Solid Films, 519, 7438–7443, 2011.
25. C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J. Moore, “Synthesis and processing of Cu-In-Ga-Se sputtering target,” Thin Solid Film, 332, 340-344, 1998.
26. M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Sol. Energy, 77, 749-756, 2004.
27. V. K. LaMer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc., 72, 4847-4848, 1950.
28. X. Peng, J. Wickham, A. P. Alivisatos, “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc., 120, 5343-5344, 1998.
29. C. B. Murray, C. R. Kagan, M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblites,” Annu. Rev. Mater. Sci., 30, 545-610, 2000.
30. Z. A. Peng, X. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc., 124(13), 3343-3353, 2002.
31. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew. “Synthesis of monodisperse spherical nanocrystals,” Chem. Int. Ed., 46, 4630-4660, 2007.
32. 游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,中華民國97年6月。
33. P. W. Voorhees, “The theory of ostwald ripening,” J. Stat. Phys., Vol. 38 Nos. 1/2, 1985.
34. I. M. Lifshitz, V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids, 19(1-2), 35–50, 1961.
35. D. Fairhurst, and R. W. Lee, “Aggregation, agglomeration-how to avoid aggravation when formulating particulate suspensions,” Drug Delivery Tech., Vol. 8, No. 8, 2008.
36. R. Lee Penn and Jillian F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2,” Am. Miner., 83, 1077-1082, 1998.
37. R. L. Penn, J. F. Banfiled, Geochim. Cosmochim, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochim. Cosmochim. Acta, 63, 1549-1557, 1999.
38. Y.-W. Jun, J.-S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.,” Angew. Chem. Int. Ed. Enql., 45(21), 3414-3439, 2006.
39. H. Cölfen, S. Mann, “Highteer-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew. Chem. Int. Ed. Engl., 42(21), 2350-2365, 2003.
40. T. Vossmeyer,G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “A “double-diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters,” Science, 267, 1476-1479, 1995.
41. W. P. Hsu, L. REnnquist, E. Matijevic, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV),” Langmuir, 4, 31-37, 1988.
42. S. Wohlrab, N. Pinna, M. Antonietti, H. CElfen,” Polymer-induced alignment of DL-alanime nanocrystals to crystalline mesostructured,” Chem. Eur. J., 11, 2903, 2005.
43. H. Cölfen, and M. Antonietti, “Mesocrystals to crystalline mesostructures,” Chem. Int. Ed., 44, 5576-5591, 2005.
44. D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo and Z. Zhou, “Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement,” J. Mater. Chem. A, 4, 4188-4193, 2016.
45. P. W. Majsztrik, M. Kirkham, V. Garcia-Negron, Edgar Lara-Curzio, E. J. Skoug, D. T. Morelli, “Effect of thermal processing on the microstructure and composition of Cu–Sb–Se compounds,” J. Mater. Sci., 48, 2188–2198, 2013.
46. 黃瑞雄、顏溪成,漫談電化學,科學發展359期,2002年11月
47. Y. Rodríguez-Lazcano, M. T. S. Nair, and P. K. Nair, “Photovoltaic p-i-n Structure of Sb2S3 and CuSbS2 Absorber Films Obtained via Chemical Bath Deposition,” J. Electrochem. Soc., 152(8), G635-G638, 2005.
48. D. Tang, J. Yang, F. Liu, Y. Lai , J. Li , Y. Liu, “Growth and characterization of CuSbSe2 thin films prepared by electrodeposition,” Electrochim. Acta, 76, 480–486, 2012.
49. Y. A. Yang, H. M. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. 117(41), 6870-6873, 2005.
50. S. H. Chang, B. C. Chiu, T. L. Gao, S. L. Jheng and H. Y. Tuan, “Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes,crystal phases, and morphologies,” Crystengcomm, 16, 3323–3330, 2014.
51. K. Ramasamy, H. Sims, W. H. Butler, and A. Gupta, “Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper−Antimony−Sulfide,” Chem. Mater., 26, 2891−2899, 2014.
52. Y. Zou, J. Jiang, “Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals,” Mater. Lett., 123, 66–69, 2014.
53. Y. Liu, J. Yang, E. Gu, T. Cao, Z. Su, L. Jiang, C. Yan, X. Hao, F. Liu and Y. Liu, “Colloidal synthesis and characterisation of Cu3SbSe3 nanocrystals,” J. Mater. Chem., A2, 6363–6367, 2014.
54. V. B. Ghanwat, S. S. Mali, R. M. Mane, P. S. Patil, K. H. Chang, P. N. Bhosale, “Thermoelectric properties of nanocrystalline Cu3SbSe4 thin films deposited by a self-organized arrested precipitation technique,” New J. Chem, 39, 5661-5668, 2015.
55. J. Zhou, G. Q. Bian, Q. Y. Zhu, Y. Zhang, C. Y. Li, J. Dai, “Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure,” J. Solid State Chem., 182, 259–264, 2009.
56. T. Henriet, B. Nicolaï, C. Ghaddar, M. Barrio, B. Do, N. Yagoubi, J. L. Tamarit, I. B. Rietveld, “Triethylenetetramine Dihydrochloride: Interactions and Conformations in Two Anhydrous Structures and a Hydrate,” Cryst. Growth Des., 15, 348-357, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw