進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007201614312100
論文名稱(中文) 功能化非對稱高分子/無機粒子複合參層膜在鋰離子全電池之應用
論文名稱(英文) Polymer/Inorganic Nanoparticle Composites with Asymmetric Trilayer Configuration as Functional Electrolyte Membrane for Full-cell Lithium Ion Battery
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 林永溢
研究生(英文) Yong-Yi Lin
學號 N36034534
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 指導教授-鄧熙聖
口試委員-楊明長
口試委員-蔡建成
口試委員-洪凱炫
中文關鍵字 膠態高分子電解質  奈米複合膜  非對稱參層膜構造  全電池  鋰離子電池 
英文關鍵字 Gel polymer electrolyte  Nanocomposite membrane  Asymmetric trilayer configuration  Full cell  Lithium ion battery 
學科別分類
中文摘要 以按次序靜電紡絲製備的非對稱參層膜不同於傳統奈米複合膜,其藉由調整紡絲液中陶瓷奈米粒子的種類,使膜材層與層間的性質造成差異,賦予高分子電解質具備獨特的鋰離子傳遞機制。層與層的沉積使不同界面電位的奈米粒子局部分散在膜材兩側,其中以不含陶瓷材料的高分子作為夾層。在電化學反應的過程,電解質的界面電位差能降低離子遷移的阻力。鋰離子經由二氧化矽的表面嵌入石墨負極,防止鋰離子以配位化合物的形式導致負極剝離,抑制不預見的還原反應。界面電位為正的二氧化鈦粒子具有吸附陰離子團的效果,其形成連續的電荷分布有助於自由鋰離子的傳遞。對於使用非對稱參層膜的電解質系統,陰離子團受到界面電位為正的奈米粒子吸引,防止陰離子團任意分布造成濃度極化現象,電池的使用壽命也隨之提升。以二氧化矽與二氧化鈦改質之聚丙烯腈基非對稱參層膜在30度具備導離子度1.60毫西門子/公分,於高充放電速率5C能提供放電電容量110豪安培小時/克,與商用參層隔離膜的性能有明顯的差異。以5C進行循環壽命測試,測試500圈後其仍具備87%的原有電容量。使用對稱式鋰電池以電流密度0.5豪安培/平方公分進行三小時充電與放電程序,模擬電解質應用於鋰金屬電池的電池壽命,非對稱參層模在測試的270小時內並未觀察到內部短路的情形。藉由靜電紡絲或靜電噴塗的現代工藝,非對稱參層膜的概念將可以適用在許多不對稱電極的電池系統。
英文摘要 Asymmetric trilayer membrane shall be first used in full cell lithium ion battery. By choosing the ceramic fillers of electrospinning solution during layer-by-layer deposition, acidic/basic property can be functionalized in individual layer. The transition from coordination complexes to free lithium ions is expected on the surface of SiO2 nanoparticles. On the other side, anions accumulated on the surface of nanoparticle can provide an efficient pathway for lithium ions. The pivotal concept of zeta potential difference for polarization behavior is stressed in the electrolyte and it is different from the case in conventional nanocomposite membrane. It is observed that the performance of electrolyte membranes has no direct relation with their ionic conductivity. Poly(acrylonitrile) based electrolyte membrane with asymmetric trilayer configuration can exhibit 1.60 mS cm−1 at 30 oC. It provides a capacity of 110 mAh g−1 at 5 C-rate and retain 87% initial capacity after 500 cycles. The rate capability of the battery is comparable to that assembled with commercial trilayer membrane. It can sustain at 0.5 mA cm−2 without internal short circuit during 270 h lithium stripping-plating process. With modern electrospray or electrospinning process, the unique configuration applications of this technology include full cell lithium ion batteries, supercapacitors and other battery systems made up of asymmetric electrode configuration.
論文目次 中文摘要...................................................................I
Abstract.................................................................II
Acknowledgements........................................................III
Contents.................................................................IV
List of Figures..........................................................VI
List of Tables...........................................................IX
Chapter 1 Introduction....................................................1
Chapter 2 Literature Survey and Theoretical Analysis......................3
2-1 Lithium Ion Batteries.............................................3
2-2 Electrode Materials and Full Cell Lithium Ion Batteries...........4
2-3 Commercial Separators.............................................6
2-4 Nanocomposite Membranes...........................................7
2-5 Counter-ion Surface Interactions..................................8
2-6 Motivations......................................................10
Chapter 3 Experimental and Characterization..............................11
3-1 Experimental.....................................................11
3-1-1 Chemicals and Materials..........................................11
3-1-2 Instruments......................................................12
3-1-3 Synthesis of Nanocomposite Membranes.............................13
3-1-4 Synthesis Route of Nanocomposite Membranes.......................15
3-1-5 Electrode and Cell Preparation...................................16
3-1-6 Cell Assembly and Concerns of Full Cell Lithium Ion Battery......17
3-2 Characterization.................................................18
3-2-1 Ionic Conductivity Measurements..................................18
3-2-2 Li+ Transference Number Measurements.............................19
3-2-3 Consecutive Charge-Discharge Tests...............................20
3-2-4 Zeta Potential Measurements and Raman Spectroscopy...............21
3-2-5 Anodic Stability by Cyclic Voltammetry...........................22
3-2-6 Lithium Stripping-Plating Process................................22
Chapter 4 Results and Discussion.........................................23
4-1 Ionic Conductivity of Nanocomposite Membranes....................23
4-2 Li+ Transference Numbers of Nanocomposite Membranes..............25
4-3 Consecutive Charge-Discharge Tests (in Half Cells)...............29
4-4 Ion Transport Induced by Zeta Potential Difference...............33
4-5 Raman Spectroscopic Measurements.................................36
4-6 Consecutive Charge-Discharge Tests (in Full Cells)...............41
4-7 Rate Capability Tests............................................43
4-8 Cycle Life Tests.................................................45
4-9 Evaluation of Inverse Structure of 3-SPT.........................49
4-10 Anodic Stability of Nanocomposite Membranes......................51
4-11 Lithium Stripping-Plating Process................................53
4-12 Comparisons in Literatures.......................................55
Chapter 5 Conclusions....................................................56
References...............................................................57
參考文獻 [1] E. C. Evarts, To the limits of lithium, Nature 2015, 526, S93.
[2] G. Patry, A. Romagny, S. Martinet, D, Froelich, Cost modeling of lithium-ion battery cells for automotive applications, Energy Sci. Eng. 2014, 3, 71.
[3] E. M. Erickson, C. Ghanty, D. Aurbach, New horizons for conventional lithium ion battery technology, J. Phys. Chem. Lett. 2014, 5, 3313.
[4] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 2004, 104, 4303.
[5] P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, J. H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, J. Power Sources 2001, 196, 6742.
[6] G. B. Appetecchi, P. Romagnoli, B. Scrosati, Composite gel membranes: A new class of improve polymer electrolytes for lithium batteries, Electrochem. Commun. 2001, 196, 6742
[7] B. Huang, Z. Wang, L. Chen, R. Xue, F. Wang, The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes, Solid State Ionics 1996, 91, 279.
[8] F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature 1998, 394, 30.
[9] Z. Wang, W. Gao, L. Chen, Y. Mo, X. Hunag, Raman and AC impedance spectroscopic studies on roles of polyacrylonitrile in polymer electrolytes, J. Electrochem. Soc. 2002, 149, E148.
[10] A. J. Bhattacharyya, J. Maier, Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”, Adv. Mater. 2004, 16, 9.
[11] C. Brissot, J. N. Chazalviel, S. Lascaud, M. Rosso, Dendritic growth mechanisms in lithium/polymer cells, J. Power Sources 1999, 81-82, 925.
[12] S. Srivastava, J. L. Schaefer, Z. Yang, Z. Tu, L. A. Archer, 25th anniversary article: Polymer-particle composites: Phase stability and applications in electrochemical energy storage, Adv. Mater. 2014, 26, 201.
[13] B. K. Choi, Y. W. Kim, K. H. Shin, Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes, J. Power Sources 1997, 68, 357.
[14] J. Zhou, P. S. Fedkiw, Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides, Solid State Ionics 2004, 166, 275.
[15] S. K. Das, A. J. Bhattacharyya, Oxide particle surface chemistry and ion transport in “soggy sand” electrolytes, J. phys. Chem. C 2009, 113, 6699.
[16] A. J. Bhattacharyya, Ion Transport in liquid salt solutions with oxide dispersions: “Soggy sand” electrolytes, J. Phys. Chem. Lett. 2012, 3, 744.
[17] R. Fong, U. Sacken, J. R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 1990, 137, 2009.
[18] A. S. Andersson, J. O. Thomas, The source of first-cycle capacity loss in LiFePO4, J. Power Sources 2001, 97-98, 498.
[19] W. J. Zhang, Structure and performance of LiFePO4 cathode materials: A review, J. Power Sources 2011, 196, 2962.
[20] B. Son, M. H. Ryou, J. Choi, S. H. Kim, J. M. Ko, Y. M. Lee, Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries, J. Power Sources 2013, 243, 641.
[21] C. S. Kim, K. M. Jeong, K. Kim, C. W. Yi, Effect of capacity rations between anode and cathode on electrochemical properties for lithium polymer batteries, Electrochim. Acta 2015, 155, 431.
[22] Y. Zhai, K. Xiao, J. Yu, B. Ding, Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries, Electrochim. Acta 2015, 154, 219.
[23] T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, T. Sakai, Battery performance and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery, J. Power Sources 2013, 181, 155.
[24] B. W. Zewde, S. Admassie, J. Zimmermann, C. S. Isfort, B. Scrosati, J. Hassoun, Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2O3 ceramic filler, CHEMSUSCHEM 2013, 6, 1400.
[25] Q. Pan, D. M. Smith, H. Qi, S. Wang, C. Y. Li, Hybrid Electrolytes with controlled network structure for lithium metal batteries, Adv. Mater. 2015, 27, 5995.
[26] Y. J. Kim, H. S. Kim, C. H. Doh, S. H. Kim, S. M. Lee, Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries, J. Power Sources 2013, 244, 196.
[27] H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham, Characterization of some polyacrylonitrile-based electrolytes, Chem. Mater. 1997, 9, 369.
[28] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile), Chem. Mater. 1993, 5, 1268.
[29] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue, F. Wang, Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy, Electrochim. Acta 1996, 41, 1443.
[30] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes, Solid State Ionics 1999, 121, 141.
[31] F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R. Caminiti, Physical and chemical properties of nanocomposite polymer electrolytes, J. phys. Chem. B 1999, 103, 10632.
[32] J. Maier, Concentration polarization of salt-containing liquid electrolytes, Adv. Funct. Mater. 2011, 21, 1448.
[33] Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Stable cycling of lithium metal batteries using high transference number electrolytes, Adv. Energy Mater. 2015, 5, 1402073.
[34] W. Cai, Y. Zhang, J. Li, Y. Sun, H. Cheng, Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range, CHEMSUSCHEM 2014, 7, 1063.
[35] K. C. Krogman, J. L. Lowery, N. S. Zacharia, G. C. Rutledge, P. T. Hammond, Spraying asymmetry into functional membranes layer-by-layer, Nat. Mater. 2009, 8, 512.
[36] P. T. Hammond, Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly, AIChE J. 2011, 57, 2928.
[37] Z. Wang, B. Huang, H. Huang, R. Xue, L. Chen, F. Wang, The vibrational spectroscopic study of polyacrylonitrile-based electrolye, Spectrochim. Acta, Part A 1996, 52, 691.
[38] M. Minagawa, T. Takasu, T. Morita, H. Shirai, Y. Fujikura, The steric effect of solvent molecules in the dissolution of polyacrylonitrile from five different N,N-dimethylformamide derivatives as studied using Raman spectroscopy, Polymer 1996, 37, 463.
[39] S. W. Choi, J. R. Kim, S. M. Jo, W. S. Lee, Y. R. Kim, Electrochemical and Spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes, J. Electrochem. Soc. 2005, 152, A989.
[40] S. K. Chaurasia, R. K. Singh, S. Chandra, Ion-polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: A Raman study, Vib. Spectrosc 2013, 68, 190.
[41] X. Xuan, J. Wang, H. Wang, Theoretical insights into PF6− and its alkali metal ion pairs: Geometries and vibrational frequencies, Electrochim. Acta 2005, 50, 4196.
[42] S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, E. Plichta, Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides, J. Power Sources 2001, 97-98, 644.
[43] F. Croce, L. Settimi, B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties, Electrochem. Commun. 2006, 8, 364.
[44] P. Raghavan, J. Maunel, X. Zhao, D. S. Kim, J. H. Ahn, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, J. Power Sources 2011, 196, 6742.
[45] M. Rao, X. Geng, Y. Liao, S. Hu, W. Li, Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery, J. Membr. Sci. 2012, 399-400, 37.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw