進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007201614112400
論文名稱(中文) 利用多區間偏好關係之品質機能展開模式
論文名稱(英文) A Quality Function Deployment Model by Aggregating Multiple Interval Preference Relations
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 104
學期 2
出版年 105
研究生(中文) 陳炫儒
研究生(英文) Hsuan-Ju Chen
學號 r36034147
學位類別 碩士
語文別 中文
論文頁數 60頁
口試委員 指導教授-陳梁軒
口試委員-王泰裕
口試委員-施勵行
中文關鍵字 品質機能展開  區間偏好關係  模糊集合理論 
英文關鍵字 Quality Function Deployment (QFD)  Fuzzy set theory  Interval preference relation 
學科別分類
中文摘要 品質機能展開(Quality Function Deployment, QFD)為企業開發新產品時,用以掌握顧客需求,並將之轉換為具體設計規格的方法。隨著市場日趨競爭,為能對市場變化及顧客需求做出及時且恰當的回饋,競爭分析亦為一項重要考量,將這些來自顧客、相關競爭者,及企業在市場上的表現等資訊,加入品質機能展開的過程。訂定生產計劃時,亦須考量諸多因素,如成本、顧客滿意度、技術上限等。而在有限資源的情形下,如何將資源做最有效的分配,是一重要議題。以往品質機能展開研究文獻中,對於品質屋的各項輸入值,大多以整數值或語意變數來評估。但歸納現行品質機能展開評估方式所採用的方法,其評估方式為針對單一準則下評估值。但此法對於決策而言,因為只考量單一準則,並無參考準則間的相對關係,不利決策結果,因此造成準確性值得商榷。而偏好關係可以將準則間的相對關係,有系統地聯結,並將評估準則間兩兩成對比較;一方面可以減輕決策之複雜度,一方面可以減少判斷之失誤,讓決策者僅需專注於兩兩決策準則間的相對關係。得以提升整體評估的正確性。
本研究利用多種偏好關係(preference relation)作為評估值的品質機能展開決策流程,共分為三階段。第一階段利用偏好關係蒐集及整合專家意見,由專家對產品的顧客需求進行評估後,整合專家意見;第二階段為品質屋階段將第一階段所得到的評估值進行競爭分析,並避免設計需求的相互影響,求得具有競爭資訊的顧客需求重要性與正規化關係矩陣。並以此進入第三階段設計需求執行度求解,考量預算、技術的條件下,並加入Kano概念,以期能得一較佳之執行度解。
英文摘要 Quality Function Deployment (QFD) is a method that transforms customer demand into specific designs. In previous studies of QFD, House of Quality (HOQ) Matrix is frequently set based on integer values or linguistic variables, which makes it a single criterion method that can result in inaccurate evaluation and fault decisions. Whereas in a preference relations-based method, correlations are systematically sorted and compared with evaluation criterions in pairs. On one hand, it eases the complexity of the decision making process; on the other, it reduces the chances of false judgments, enabling decision makers to solely focus on the binary comparison. Therefore, accuracy of the overall evaluation is enhanced.

This research adopts preference relations in a three-phase QFD process. In the first phase, experts are sought to inquire and evaluate on customer demand of a product. Results are gathered and integrated with the experts’ opinions based on preference relation. In the second phase, the HOQ takes the values derived from the first phase and conducts a competitive analysis. It is important that design requirements do not conflict with one another and a normalized relationship matrix that considers customer demand is obtained. Based on the results of the previous phase, it is in phase three where implementation efficiency is closely monitored under budget and technical conditions using the Kano model. A figure is submitted as a model to justify the rationality and superiority of this research. In the findings, the Kano model is proven to be of higher efficiency.
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 V
目錄 I
圖目錄 III
第一章緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究範圍 3
1.4研究流程 3
1.5論文架構 4
第二章文獻探討 5
2.1模糊集合理論 5
2.2品質機能展開 7
2.3偏好關係 17
2.4熵值 20
2.5KANO模型 23
第三章 區間偏好關係之品質機能展開模式建構 25
3.1研究構想 25
3.2模式建構與求解 28
3.3小結 41
第四章 範例演算 43
4.1案例說明 43
4.2案例演算與分析 44
4.3小結 54
第五章 結論與未來研究方向 55
5.1研究結論 55
5.2未來研究方向 56
參考文獻 57


圖目錄
圖1-1研究流程圖 3
圖2-1五等級語意尺度轉換圖 6
圖2-2 品質機能展開四階段圖 9
圖2-3 品質屋(HOQ)之基本架構圖 11
圖2-4 KANO概念模型圖 24
圖3-1 研究方法架構圖 27
圖3-2品質屋符號說明圖 30

表目錄
表2-1文獻整理 17
表4-1顧客需求介紹 44
表4-2設計需求介紹 44
表4-3設計需求成本與上限 44
表4-4偏好關係介紹 45
表4-5語意關係 45
表4-6成員一 顧客需求初始重要性 46
表4-7成員一 顧客需求競爭分析 46
表4-8成員一 顧客需求與設計需求相關矩陣 47
表4-9成員一 設計需求間關係矩陣 47
表4-10成員二 顧客需求初始重要性 47
表4-11成員二 顧客需求競爭分析 47
表4-12成員二 顧客需求與設計需求相關矩陣 48
表4-13成員二 設計需求間關係矩陣 48
表4-14成員三 顧客需求初始重要性 48
表4-15成員三 顧客需求競爭分析 48
表4-16成員三 顧客需求與設計需求相關矩陣 49
表4-17成員三 設計需求間關係矩陣 49
表4-18整合後顧客需求重要性 49
表4-19整合後競爭分析評分 50
表4-20整合後顧客需求與設計需求間關係強度 50
表4-21整合後顧客需求與設計需求間關係強度 50
表4-22品質屋結果彙整 51
表4-23正規化相關矩陣 51
表4-24第一模式顧客需求滿意度 52
表4-25第一模式設計需求執行度 52
表4-26第二模式顧客需求滿意度 53
表4-27第二模式設計需求執行度 54
表4-28最終結果統整 54
參考文獻 參考文獻
Akao, Y. (1990). Quality Function Deployment: Integrating Customer Requirements into product design: Productivity Press, New York.
Büyüközkan, G., and Feyzioğlu, O. (2005). Group decision making to better respond customer needs in software development. Computers & Industrial Engineering, 48, 427-441.
Büyüközkan, G., Feyziog˘lu, O., and Ruan, D. (2007). Fuzzy group decision-making to multiple preference formats in quality function deployment. Computers in Industry, 58, 392–402.
Chan, L., Kao, H., and Wu, M. (1999). Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. International Journal of Production Research, 37 , 2499-2518.
Chan, L.-K., and Wu, M.-L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega, 33, 119-139.
Chen, L.-H., & Chen, C.-N. (2014). Normalisation models for prioritising design requirements for quality function deployment processes. International Journal of Production Research, 52(2), 299-313.
Chen, L.-H., and Ko, W. C. (2008). A fuzzy nonlinear model for quality function deployment considering Kano’s concept. Mathematical and Computer Modelling, 48, 581–593.
Chen, L.-H., and Ko, W.-C. (2009). Fuzzy approaches to quality function deployment for new product design. Fuzzy Sets and Systems, 160, 2620-2639.
Cohen, L. (1995). Quality Function Deployment: How to Make QFD Work for You: Addison-Wesley, Reading, MA.
Cristiano, J. J., Liker, J. K., and WhiteIII, C. C. (2001). Key factors in the successful application of quality function deployment (QFD). IEEE Transactions on Engineering Management, 48, 81–94.
Dat, L. Q., Phuong, T. T., Kao, H.-P., Chou, S.-Y., and Nghia, P. V. (2015). A new integrated fuzzy QFD approach for market segments evaluation and selection. Applied Mathematical Modelling, 39, 3653–3665
Delbecq, M., Herrera, F., Herrera-Viedma, E. and Martinez,L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107, 177-194
Gao, C.Y. and Peng, D.H. (2011). Consolidating SWOT analysis with nonhomogeneous uncertain preference information, Knowledge-Based Systems,24, 796-808
Griffin, A., & Hauser, J.R. (1993). The voice of the customer. Marketing Science, 12, 1-27.
Hauser, J.R., & Clausing, D. (1988). The house of quality. Harvard Business Reviews 66, 63–73.
Herrera-Viedma, E., Herrera, F. and Chiclana, F. (2002). A consensus model for multiperson decision making with different preference structures, IEEE Transactions on Systems, Man and Cybernetics-Part A: Humans, 32, 394–402.
Herrera, F., Martinez, L. and Sanchez, P.J. (2005). Managing non-homogeneous information in group decision-making, Europe Journal Of Operation Research, 166, 115–132.
Ho, E.S.S.A., Lai, Y.J, and Chang, S.I., (1999). An integrated group decision-making approach to quality function deployment. IIE Transactions, 31, 553–567.
Hosseinzadeh Lotfi, F., and Fallahnejad, R. (2010). Imprecise Shannon’s entropy and multi attribute decision making. Entropy, 12, 53-62.
Ishibuchi, H. and Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function, Europe Journal Of Operation Research, 48, 219–225.
Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Attractive quality and must-be quality. The Journal of the Japanese Society for Quality Control, 14(2), 39-48.
Karsak, E. E. (2004). Fuzzy multiple objective decision making approach to prioritize design requirements in quality function deployment. International Journal of Production Research, 42, 3957–3974
Karsak, E. E., Sozer, S., & Alptekin, S. E. (2002). Product planning in quality function deployment using a combined analytical network process and goal programming approach. Computers and Industrial Engineering, 44, 171–190.
Kwong, C. K., & Bai, H. (2002). A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of Intelligent Manufacturing, 13, 367–377.
Kwong, C. K., & Bai, H. (2003). Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Transactions, 35, 619–626.
Luo, X.-G., Tang, J.-F. D. & Wang, W. (2008).An optimization method for components selection using quality function deployment. International Journal of Advanced Manufacturing Technology, 39, 158–167.
Lyman, D. (1990). Deployment normalization. Transactions from a second symposium on Quality Function Deployment, a conference co-sponsored by the Automotive Division of the American Society for Quality Control, the American Supplier Institute, Dearborn, MI, and GOALrQPC, Methuen, MA, 307–315.
Park, T. and Kim, K.-J. (1998). Determination of an optimal set design requirements using house of quality, Journal of Operations Management, 16, 569-581.
Partovi, F.Y., and Corredoira, R.A. (2002). Quality function deployment for the good of soccer. European Journal of Operational Research, 137, 642-656.
Shen, X.X., Tan, and K.C., Xie, M., (2000). An Integrated Approach to Innovative Product Development Using Kano’s Model and QFD, European Journal of Innovation Management, Vol. 3, No. 2, pp. 91-99.
Sullivan, L. P. (1986). Quality function deployment, Quality Progress, 39-50.
Wang, Y.M., Yang , J.B., and Xu, D. L.(2005). A preference aggregation method through the estimation of utility intervals, Computer & Operations Research, 32, 2027–2049.
Wasserman, G.S. (1993). On how to prioritize design requirements during the QFD planning process. IIE Transactions, 25, 59-65.
Xu, R.N. and Zhai, X.Y. (1992). Extensions of the analytic hierarchy process in fuzzy environment,” Fuzzy Sets and Systems, 52, 251–257.
Yan, H.-B., Ma, T. and Huynh, V.-N. (2014). Coping with Group Behaviors in Uncertain Quality Function Deployment. Decision Sciences, 45, 1025–1052.
Yan, H.-B., and Ma, T. (2015). A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority. European Journal of Operational Research, 241, 815-829
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw