進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2007201511255000
論文名稱(中文) 鉍成長在單層磊晶石墨烯上的低維結構的特性和交互作用之研究
論文名稱(英文) The structural property and interaction of bismuth-based low-dimensional structures growth on monolayer epitaxial graphene
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 103
學期 2
出版年 104
研究生(中文) 陳信賢
研究生(英文) Hsin-Hsien Chen
學號 L28001169
學位類別 博士
語文別 英文
論文頁數 132頁
口試委員 指導教授-黃榮俊
口試委員-陳宜君
口試委員-吳宗霖
口試委員-余進忠
口試委員-莊天明
中文關鍵字 石墨烯  磊晶石墨烯  碳化矽    掃描穿隧顯微鏡  掃描穿隧能譜  密度泛函理論  以石墨烯為底的元件  結構轉變  奈米團簇  金屬-石墨烯介面 
英文關鍵字 Graphene  epitaxial graphene  SiC  bismuth  scanning tunneling microscopy  scanning tunneling spectroscopy  density functional theory  graphene-based devices  structural transition  nanocluster  metal-graphene interface 
學科別分類
中文摘要 為了改善在奈米尺度下以石墨烯為基底的多功能元件,研究並且了解其中的物理機制是非常重要的。甚至於更進一步去探討如何制定其製造生產過程中的標準步驟並且達到良好的控制也是非常關鍵的課題。尤其在石墨烯的應用上石墨烯跟金屬的連結扮演著很重要的腳色,在本論文中我們首次在室溫下發現了成長在碳化矽基板上的單層石墨烯上的鉍金屬吸附原子具有長程的震盪交互作用。利用掃描穿隧顯微鏡以及密度泛函理論計算,我們了解到這種鉍金屬吸附原子間的長程震盪交互作用是源自於石墨烯上的類狄拉克電子的媒介以及碳化矽基板規律起伏表面所造成的,這兩種因素導致了在長程交互作用裡面的鉍金屬具有特徵分布距離以及特別的線性排列現象。
此外,藉由進一步去操縱厚度的變化我們可以觀察到成長在單層磊晶石墨烯上的鉍金屬吸附原子在室溫下會有一系列的結構轉變。鉍金屬吸附原子在變化厚度的過程中會經歷由一維成長模式轉變為二維成長模式的結構變化,而且此結構變化是跟基板有所關聯的。在能譜的量測中我們也發現到在鉍金屬和磊晶石墨烯之間有著微弱的電荷轉移以及存在額外的束縛態。在退火到500K之後我們也觀察到原本在室溫中形成的二維三角形結構轉變成了具有均勻大小的一維奈米團簇。這些發現幫助我們去了解並且制定了一系列可以被良好控制的製造步驟方法。總括來說我們在此論文中所使用的研究方法對於表徵或是製造石墨烯相關的多功能元件提供了非常良好的觀點可以做為相關領域參考使用。
英文摘要 To improve graphene-based multifunctional devices at nanoscale, a stepwise and controllable fabrication procedure must be elucidated. In this thesis, we have firstly demonstrated that long-range electronic interaction between Bismuth (Bi) adatoms on graphene formed on a 4H-SiC (0001) substrate at room temperature (T=300K). Using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we have elucidated that such oscillatory interaction results mainly from the mediation of graphene Dirac-like electrons and the effect of the corrugated surface of SiC substrate. These two factors cause the observed oscillatory interaction with characteristic distribution distances and linear arrangements of Bi adatoms.
Furthermore, with coverage-variation, a series of structural transition of Bi adatoms, adsorbed on monolayer epitaxial graphene (MEG), is then explored at room temperature. Bi adatoms undergo a structural transition from one-dimensional (1D) linear structures to two-dimensional (2D) triangular islands and such 2D growth mode is affected by the corrugated substrate. Upon Bi deposition, a little charge transfer occurs and a characteristic peak can be observed in the tunneling spectrum, reflecting the distinctive electronic structure of the Bi adatoms. When annealed to ~500K, 2D triangular Bi islands aggregate into Bi nanoclusters (NCs) of uniform size. A well-controlled fabrication method is thus demonstrated. The approaches adopted herein provide perspectives for fabricating and characterizing periodic networks on MEG and related systems, which are useful in realizing graphene-based electronic, energy, sensor and spintronic devices.
論文目次 Contents
摘要……… I
Abstract….. II
Acknowledgements III
Contents…. IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Introduction 1
1.1.1 Introduction to graphene 3
1.1.2 Applications of graphene 9
1.2 Graphene synthesis 15
1.3 Silicon Carbide as a template for epitaxial graphene 20
1.3.1 Introduction to Silicon carbide 20
1.3.2 Phase diagram of Silicon carbide 27
1.4 Paper reviews of the metal-deposited on epitaxial graphene surface 35
1.4.1 Reviews of metal­deposited on epitaxial graphene surface 35
1.4.2 Reviews of Bi nanoribbons deposited on epitaxial graphene surface...56
1.5 Motivation 62
1.5.1 Room temperature long-range interactions of bismuth adatoms 62
1.5.2 Low-dimensional structures of bismuth adatoms 62
1.6 References 64
Chapter 2 Theoretical aspects of instrumentation 73
2.1 Scanning Tunneling Microscopy 73
2.1.1 Operation principle of STM 73
2.1.2 Scanning tunneling spectroscopy (STS) 78
2.1.3 Lock-In technique 80
2.2 References 84
Chapter 3 Experimental equipment 86
3.1 JEOL SPM System 86
3.2 Preparation of STM tip 90
3.3 Evaporator 93
3.4 References 95
Chapter 4 Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature 96
4.1 Introduction 96
4.2 Experiment 98
4.3 Results and discussion 100
4.4 Summary 108
4.5 Supplementary Material 109
4.6 References 110
Chapter 5 Tailoring low­dimensional structures of bismuth on monolayer epitaxial graphene 113
5.1 Introduction 113
5.2 Experiment 115
5.3 Results and discussion 117
5.4 Summary 124
5.5 Supplementary Material 125
5.6 References 127
Chapter 6 Conclusion 130

參考文獻 M. S. Dresselhaus, G. Dresselhaus & P. C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. Academic, New York (1996).
A. K. Geim & P. Kim, "Carbon wonderland." Scientific American 298, 90-97 (2008).
A. K. Geim & K. S. Novoselov, "The rise of graphene." Nature Materials 6, 183-191 (2007).
M. I. Katsnelson, "Graphene: carbon in two dimensions." Materials Today 10, 20-27 (2006).
K.S. Novoselov, et al., "Electric Field Effect in Atomically Thin Carbon Films." Science 306, 666 (2004).
K. S. Novoselov, et al., "Two-dimensional gas of massless Dirac fermions in graphene." Nature 438, 197-200 (2005).
Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature 438, 201 (2005).
C. Berger, et al., "Electronic Confinement and Coherence in Patterned Epitaxial Graphene." Science 312, 1191 (2006).
Th Seyller, et al., " Epitaxial graphene: a new material." Physica status solidi (b) 245(7), 1436-1446 (2008).
L.Pauling, J. S. Kukesh, "The problem of the graphite structure." American Mineralogist 35, 125-125 (1950).
A.B. Fowler, F.F. Fang, W.E. Howard, P.J. Stiles, J. Phys. Soc. Jpn. S 21, 331 (1966).
W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, "Graphene spintronics." Nat. Nanotechnol. 9, 794–807 (2014).
I. Zutic, J. Fabian, S. Das Sarma, "Spintronics: Fundamentals and applications." Rev. Mod. Phys. 76, 323–410 (2004).
H. Dery, P. Dalal, L. Cywinski & L. J. Sham, "Spin-based logic in semiconductors for reconfigurable large-scale circuits." Nature 447, 573–576 (2007).
H. Dery, et al., "Nanospintronics based on magnetologic gates." IEEE Trans. Electron Dev. 59, 259–262 (2012).
S. Datta & B. Das, "Electronic analog of the electro-optic modulator." Appl. Phys. Lett. 56, 665–667 (1990).
N. Tombros, et al., "Electronic spin transport and spin precession in single graphene layers at room temperature." Nature 448, 571–574 (2007).
W. Han, et al., "Tunneling spin injection into single layer graphene." Phys. Rev. Lett. 105, 167202 (2010).
P. J. Zomer, et al., "spin transport in high-mobility graphene on hexagonal boron nitride." Phys. Rev. B 86, 161416 (2012).
T.-Y. Yang, et al., "Observation of long spin relaxation times in bilayer graphene at room temperature." Phys. Rev. Lett. 107, 047206 (2011).
W. Han & R. K. Kawakami, "Spin relaxation in single layer and bilayer graphene." Phys. Rev. Lett. 107, 047207 (2011).
B. Dlubak, et al., "Highly efficient spin transport in epitaxial graphene on SiC. Nature Phys. 8, 557–561 (2012).
A. H. Castro Neto, et al., "The electronic properties of graphene." Rev. Mod. Phys. 81, 109–162 (2009).
S. D. Sarma, S. Adam, E. H. Hwang & E. Rossi, "Electronic transport in two dimensional graphene." Rev. Mod. Phys. 83, 407–470 (2011).
K. S. Novoselov, et al., "Electric field effect in atomically thin carbon films." Science 306, 666–669 (2004).
J. Fabian, et al., "Semiconductor spintronics." Acta Phys. Slov. 57, 565–907 (2007).
J. Balakrishnan, et al., "Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene." Nature Phys. 9, 284–287 (2013).
C. L. Kane & E. J. Mele, "Quantum spin Hall effect in graphene." Phys. Rev. Lett. 95, 226801 (2005). This paper started the field of topological insulators.
W.-K. Tse, et al., "Quantum anomalous Hall effect in single-layer and bilayer graphene." Phys. Rev. B 83, 155447 (2011).
M.-H. Liu, J. Bundesmann & K. Richter, "Spin-dependent Klein tunneling in graphene: Role of Rashba spin–orbit coupling." Phys. Rev. B 85, 085406 (2012).
E. McCann & V. I. Fal ̀ko, "z→-z symmetry of spin–orbit coupling and weak localization in graphene." Phys. Rev. Lett. 108, 166606 (2012).
A.Scholz, A. López & J. Schliemann, "Interplay between spin–orbit interactions and a time-dependent electromagnetic field in monolayer graphene." Phys. Rev. B 88, 045118 (2013).
A. Kramida, Y. Ralchenko, J. Reader & N. A.Team, NIST Atomic Spectra Database (version 5.1) http://physics.nist.gov/asd (National Institute of Standards and Technology, 2013).
E. I. Rashba, "Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop." Sov. Phys. Solid State 2, 1224–1238 (1960).
E. Y. Andrei, G. Li, and X. Du, "Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport."Rep. Prog. Phys. 75, 056501 (2012).
F. Bonaccorso, et al., "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage." Science 347, 1246501 (2015).
K. Kostarelos, " The emergence of nanomedicine: a field in the making." Nanomedicine 1, 1–3 (2006).
V. Wagner, et al., "The emerging nanomedicine landscape." Nature Biotechnol. 24, 1211–1217 (2006).
K. Kostarelos, A. Bianco, M. Prato, "Promises, facts and challenges for carbon nanotubes in imaging and therapeutics." Nature Nanotech. 4, 627–633 (2009).
K. Kostarelos and K. S. Novoselov, "Graphene devices for life." Nature Nanotech. 9,744 (2014).
Z. Ma, R. Kozarsky & M. Holman, Graphene Market Update. Lux Research http://www.luxresearchinc.com (26 June 2014).
H. Alcalde, et al., "Market Uptake Potential of Graphene as a Disruptive Material." Proc. IEEE 101, 1793–1800 (2013).
A. Zurutuza and C. Marinelli, "Challenges and opportunities in graphene commercialization." Nat. Nanotechnol. 9, 730–734 (2014).
G. Owen, "The Rise and Fall of Great Companies: Courtaulds and the Reshaping of the Man-Made Fibres Industry" (Oxford Univ. Press/Pasold Research Fund, 2010).
M. F. L.De Volder, et al., "Carbon Nanotubes CNTs." Science 339, 535–539 (2013).
A. Kumar, C. Zhou, "Perspectives on the 2010 Nobel Prize in Physics for Graphene." ACS Nano 4(11), 6297-6302 (2010).
A.K. Geim, K.S. Novoselov, "The rise of graphene." Nat. Mater. 6, 183 (2007).
M. Liu, et al., "A graphene-based broadband optical modulator." Nature 474, 64 (2011).
J. Liang, et al., "Infrared-Triggered Actuators from Graphene-Based Nanocomposites." J. Phys. Chem. C 113, 9921 (2009).
F. Bonaccorso, et al., "Production and processing of graphene and 2d crystals." Mater. Today 15, 564 (2012).
K.S. Sivudu, Y.R. Mahajan, Nanotech Insights 6, 3 (2012).
Q. Yu, et al., "Graphene segregated on Ni surfaces and transferred to insulators." Appl. Phys. Lett. 93, 113103 (2008).
S. Bae, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nat. Nanotechnol. 5, 574 (2010).
X. Li, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324, 1312 (2009).
K.S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457, 706 (2009).
L.G. De Arco, et al., "Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition." IEEE Trans. Nanotechnol. 8, 135 (2009).
K.V. Emtsev, et al., "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide." Nat. Mater. 8, 203 (2009).
P.W. Sutter, et al., "Epitaxial graphene on ruthenium." Nat. Mater. 7, 406 (2008).
T. Ohta, et al., "Controlling the Electronic Structure of Bilayer Graphene." Science 313, 951 (2006).
C. Berger, et al., "Electronic Confinement and Coherence in Patterned Epitaxial Graphene." Science 312, 1191 (2006).
Y. L.Zhong, et al., "Scalable Production of Graphene via Wet Chemistry: Progress and Challenges" Mater. Today 18, 73– 78 (2015).
Y. W. Zhu, et al., " Graphene and Graphene Oxide: Synthesis, Properties, and Applications." Adv. Mater. 22, 3906–3924 (2010).
F. Bonaccorso, Z. Sun, T. Hasan & A. C.Ferrari, "Graphene photonics and optoelectronics." Nature Photon. 4, 611–622 (2010).
G. Eda & M. Chhowalla, " Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics." Adv. Mater. 22, 2392–2415 (2010).
K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457, 706–710 (2009).
T. Kobayashi, et al., "Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process." Appl. Phys. Lett. 102, 023112 (2013).
L. B. Gao, et al., "Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum." Nature Commun. 3, 699 (2012).
B. Y. Dai, et al., "Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene." Nature Commun. 2, 522 (2011).
W. C. Ren and H. M. Cheng, "Ten years in two dimensions." Nat. Nanotechnol. 9, 726 (2014).
X.Li, Epitaxial graphene films on SiC: growth, characterization, and devices. PhD thesis, Georgia Institute of Technology, 2008.
W. R. L. Lambrecht, et al., "Electronic band structure of sic polytypes: A discussion of theory and experiment." Physica Status Solidi B-Basic Research 202, 5–33 (1997).
H. Jagodzinski, "Polytypism in sic crystals." Acta Crystallographica 7, 300–300, (1954).
L. S. Ramsdell, "The crystal structure of alpha-sic, type iv." American Mineralogist 29, 431–442 (1944).
W. R. L. Lambrecht, et al., "Electronic band structure of sic polytypes: A discussion of theory and experiment." Physica Status Solidi B-Basic Research 202, 5–33 (1997).
V. E. Chelnokov, A. L. Syrkin, and V. A. Dmitriev, "Overview of SiC power electronics." Diamond and Related Materials, vol 6, 1480–1484 (1997).
J. A. Cooper and A. Agarwal, "SiC power-switching devices - the second electronics revolution?." Proceedings of the IEEE 90, 956–968 (2002)
A. Elasser and T. P. Chow, "Silicon carbide benefits and advantages for power electronics circuits and systems." Proceedings of the IEEE 90, 969–986 (2002).
U. Starke, J. Bernhardt, J. Schardt and K. Heinz, " SiC SURFACE RECONSTRUCTION: RELEVANCY OF ATOMIC STRUCTURE FOR GROWTH TECHNOLOGY." Surf. Rev. Lett. 6, 1129 (1999).
T. Seyller, "Passivation of hexagonal SiC surfaces by hydrogen termination." J. Phys.: Condens. Matter 16, S1755 (2004).
E.A. Wood, "Vocabulary of Surface Crystallography." J. Appl. Phys. 35, 1306 (1964).
M. Sabisch, P. Kruger, and J. Pollmann, "Ab initio calculations of structural and electronic properties of 6H-SiC (0001) surfaces." Phys. Rev. B 55, 10561 (1997).
U. Starke, in: Silicon Carbide, Recent Major Advances (eds.: W.J. Choyke, H.Matsunami and G. Pensl), p. 281-316, Atomic structure of SiC surfaces, (Springer, 2004).
R. Kaplan, "Surface structure and composition of β- and 6H-SiC."Surf. Sci. 215, 111 (1989).
Christian Riedl. Epitaxial Graphene on Silicon Carbide Surfaces: Growth, Characterization, Doping and Hydrogen Intercalation. Ph.D. thesis, Friedrich Alexander University, Nurnberg (2010).
K. Heinz, J. Bernhardt, J. Schardt and U. Starke, J. Phys.: "Functional surface reconstructions of hexagonal SiC." Condens. Matter 16, S1705 (2004).
K. Heinz, U. Starke, J. Bernhardt and J. Schardt, "Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces." Appl. Surf. Sci. 9, 162-163 (2000).
U. Starke, "Surface Reconstruction on SiC (0001) and SiC(000-1): Atomic Structure and Potential Application for Oxidation, Stacking and Growth." Mater. Sci. Forum 353-356, 205 (2001).
U. Starke, " Reconstruction and epitaxial adlayers on SiC surfaces: Structural significance for technological application." Mater. Res. Soc. Proc. 742, 35 (2003).
U. Starke, et al., "Novel reconstruction mechanism for dangling-bond minimization: Combined method surface structure determination of SiC (111)-(3x3)." Phys. Rev. Lett. 80, 758 (1998).
J. Schardt, J. Bernhardt, U. Starke and K. Heinz, "Crystallography of the (3x3) surface reconstruction of 3C-SiC (111), 4H-SiC (0001) and 6H-SiC (0001) surfaces retrieved by low-energy electron diffraction." Phys. Rev. B 62, 10335 (2000).
U. Starke, J. Schardt, J. Bernhardt, M. Franke and K. Heinz, "Stacking transformation from hexagonal to cubic SiC induced by surface reconstruction: A seed for heterostructure growth." Phys. Rev. Lett. 82, 2107 (1999).
C. Riedl, U. Starke, J. Bernhardt, M. Franke, and K. Heinz, "Structural properties of the graphene-SiC (0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces." Phys. Rev. B 76, 245406 (2007).
C. Riedl, U. Starke, J. Bernhardt, M. Franke, and K. Heinz, "Structural properties of the graphene-SiC (0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces." Phys. Rev. B 76, 245406 (2007).
G. M. Rutter, et al., "Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy." Phys. Rev. B 76, 235416 (2007).
U. Starke, et al., "Large unit cell superstructures on hexagonal SiC-surfaces studied by LEED, AES and STM." Mater. Sci. Forum 264-268, 321 (1998).
S. Kim, J. Ihm, H.J. Choi, and Y.-W. Son, "Origin of Anomalous Electronic Structures of Epitaxial Graphene on Silicon Carbide." Phys. Rev. Lett. 100, 176802 (2008).
C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, and U. Starke, "Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation." Phys. Rev. Lett. 103, 246804 (2009).
A. Bostwick, et al., "Symmetry breaking in few layer graphene films." New J. Phys. 9, 385 (2007).
K.V. Emtsev, F. Speck, T. Seyller, L. Ley, and J.D. Riley, "Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study." Phys. Rev. B 77, 155303 (2008).
S.-L. Wong, et al., "STM studies of epitaxial graphene." MRS Bull 37, 1195–202 (2012).
F. Varchon, et al., "Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface." Phys. Rev. B 77, 235412 (2008)
T. Mashoff, et al., "Hydrogen storage with titanium-functionalized graphene." Appl. Phys. Lett. 103, 013903 (2013).
M. Hupalo, S. Binz, and M. C. Tringides, "trong metal adatom–substrate interaction of Gd and Fe with graphene." J. Phys. Condens. Matter 23, 045005 (2011).
X. Liu, et al., "Bonding and charge transfer by metal adatom adsorption on graphene." Phys. Rev. B 83, 235411 (2011).
X. Liu, et al., "Fe-Fe adatom interaction and growth morphology on graphene." Phys. Rev. B 84, 235446 (2011).
M. Gyamfi, et al., "Orbital selective coupling between Ni adatoms and graphene Dirac electrons." Phys. Rev. B 85, 161406(R) (2012).
X. Liu, et al., "Growth morphology and thermal stability of metal islands on graphene." Phys. Rev. B 86, 081414(R) (2012).
X. Liu, et al., "Structures and magnetic properties of Fe clusters on graphene." Phys. Rev. B 90, 155444 (2014).
S. M. Binz, et al., " High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene." Phys. Rev. Lett. 109, 026103 (2012).
J. W. Evans, P. A. Thiel, and M. C. Bartelt, " Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds." Surf. Sci. Reports 61, 1 (2006).
X. Liu, et al., "Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy." Phys. Rev. B 82, 245408 (2010).
M. Hupalo, et al., " Metal Nanostructure Formation on Graphene: Weak versus Strong Bonding." Adv. Mater. 23, 2082 (2011).
J. Renard, M. B. Lundeberg, J. A. Folk, and Y. Pennec, " Real-Time Imaging of K atoms on Graphite: Interactions and Diffusion." Phys. Rev. Lett. 106, 156101 (2011).
W. Kohn and K. H. Lau, "Adatom dipole moments on metals and their interactions." Solid State Comm. 18, 553 (1976).
J. A. Stroscio, D. T. Pierce, and R. A. Dragoset, "Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction." Phys. Rev. Lett. 70, 3615 (1993).
K. Fichthorn and M. Scheffler, " Island Nucleation in Thin-Film Epitaxy: A First-Principles Investigation." Phys. Rev. Lett. 84, 5371 (2000).
A. Bogicevic, et al., "Nature, Strength, and Consequences of Indirect Adsorbate Interactions on Metals." Phys. Rev. Lett. 85, 1910 (2000).
S. Ovesson, "Mean-Field Nucleation Theory with Nonlocal Interactions." Phys. Rev. Lett. 88, 116102 (2002).
D. F. Fo ̈rster, et al., " Phase coexistence of clusters and islands: europium on graphene." New J. Phys. 14, 023022 (2012).
C.-L. Song, et al., "Charge-transfer-induced cesium superlattices on graphene." Phys Rev Lett 108,156803 (2012).
J.-Y. Veuillen, F. Hiebel, L. Magaud, P. Mallet, and F. Varchon, " Interface structure of graphene on SiC: an ab initio and STM approach." J. Phys. D 43, 374008 (2010).
R. Balog, et al., "Atomic Hydrogen Adsorbate Structures on Graphene." J. Am. Chem. Soc. 131, 8744 (2009).
D. C. Elias, et al., " Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane." Science 323, 610 (2009).
S. Ryu, et al., "Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate." Nano Lett. 10, 4944 (2010).
J. L. Li, et al., " Spontaneous Assembly of Perfectly Ordered Identical-Size Nanocluster Arrays." Phys. Rev. Lett. 88, 066101 (2002).
A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, "Two-Dimensional Ir Cluster Lattice on a Graphene Moiré on Ir (111)."Phys. Rev. Lett. 97, 215501 (2006).
N. Knorr, et al., "Long-range adsorbate interactions mediated by a two-dimensional electron gas." Phys. Rev. B 65, 115420 (2002).
M. Caragiu and S. Finberg, " Alkali metal adsorption on graphite: a review." J. Phys. Condens. Matter 17, R995 (2005).
T. von Hofe, J. Kro¨ger, and R. Berndt, "Adsorption geometry of Cu (111) −Cs studied by scanning tunneling microscopy." Phys. Rev. B 73, 245434 (2006).
P. A. Khomyakov, "Nonlinear screening of charges induced in graphene by metal contacts." Phys. Rev. B 82, 115437 (2010).
J.-T. Sun, et al., "Energy-gap opening in a Bi (110) nanoribbon induced by edge reconstruction." Phys Rev Lett 109, 246804 (2012).
H. Huang, et al., "Scanning tunneling microscope and photoemission spectroscopy investigations of bismuth on epitaxial graphene on SiC (0001). " J Phys Chem C 118, 24995–9 (2014).
P. J. Kowalczyk, et al., "STM and XPS Investigations of Bismuth Islands on HOPG." Surf. Sci. 605, 659−667 (2011).
O. Ü. Aktürk, M. Tomak, "Bismuth Doping of Graphene." Appl. Phys. Lett. 96, 081914 (2010).
H. Huang, et al., "Structural and Electronic Properties of PTCDA Thin Films on Epitaxial Graphene." ACS Nano 3, 3431−3436 (2009).
I. Gierz, et al., "Atomic Hole Doping of Graphene." Nano Lett. 8, 4603−4607 (2008).
P. J. Kowalczyk, et al., "Electronic Size Effects in Three-Dimensional Nanostructures." Nano Lett. 13, 43−47 (2013).
S. A. Scott, M. V. Kral, S. A. Brown, "Growth of Oriented Bi Nanorods at Graphite Step-Edges." Phys. Rev. B 72, 205423 (2005).
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, "Tunneling through a controllable vacuum gap." Appl. Phys. Lett. 40, 178 (1982).
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, "Surface studies by scanning tunneling microscopy." Phys. Rev. Lett. 49, 57 (1982).
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, "7 × 7 reconstruction on Si (111) resolved in real space." Phys. Rev. Lett. 50, 120 (1983).
J. Frenkel, "On the electrical resistance of contacts between solid conductors." Phys. Rev. 36, 1604 (1930).
Giaever, "Energy Gap in Superconductors Measured by Electron Tunneling." Phys. Rev. Lett. 5, 147 (1960).
J. C. Fisher and I. Giaever, "Tunneling Through Thin Insulating Layers." J. Appl. Phys. 32, 172 (1961).
M. Ternes, "Scanning Tunneling Spectroscopy at the Single Atom Scale." PhD thesis, École Polytechnique Fédérale de Lausanne (2006).
C. J. Chen, "Introduction to Scanning Tunneling Microscopy." Oxford University Press, New York, Oxford (1993).
H. B. Michaelson, "The work function of the elements and its periodicity." J. Appl. Phys. 48, 4729 (1977).
N. D. Lang, "Spectroscopy of single atoms in the scanning tunneling microscope." Phys. Rev. B 34, 5947 (1986).
Y. Kuk, P. J. Silverman, and H. Q. Nguyen, "Study of metal surfaces by scanning tunneling microscopy with field ion microscopy." J. Vac. Sci. Technol. A 6, 524 (1988).
J. Bardeen, "Tunnelling from a Many-Particle Point of View." Phys. Rev. Lett. 6, 57 (1961).
J. Tersoff and D.R. Hamann, "Theory and Application for the Scanning Tunneling Microscope." Phys. Rev. Lett. 50, (1998).
J. Tersoff and D. R. Hamann, "Theory of the scanning tunneling microscope." Phys. Rev. B 31, 805 (1985).
R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, "Atom-selective imaging of the GaAs(110) surface." Phys. Rev. Lett. 58, 1192 (1987).
G. Binnig and H. Rohrer, "Scanning tunneling microscopy." Surf. Sci. 126, 236 (1983).
M. Pivetta, F. Silly, F. Patthey, J. P. Pelz, and W.-D. Schneider, "Reading the ripples of confined surface-state electrons: Profiles of constant integrated local density of states." Phys. Rev. B 67, 193402 (2003).
J. Klein, A. Léger, M. Belin, and D. Défourneau, "Inelastic-Electron-Tunneling Spectroscopy of Metal-Insulator-Metal Junctions." Phys. Rev. B 7, 2336 (1973).
J. T. Li, W.-D. Schneider, R. Berndt, O. R. Bryant, and S. Crampin, "Surface-State Lifetime Measured by Scanning Tunneling Spectroscopy." Phys. Rev. Lett. 81, 4464 (1998).
J. H. Lai, "Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning Probe Microscopy and Spectroscopy." PhD thesis, Department of Physics, National Cheng Kung University (2010).
S. H. Su, "The structural and chemical properties of Co growth on ZnO (10-10) surface." PhD thesis, Department of Physics, National Cheng Kung University (2013).
J. Chen, "DIFFUSIVE CHARGE TRANSPORT IN GRAPHENE." PhD thesis, Department of Physics, University of Maryland (2009).
A .Bogicevic, et al., "Nature, Strength, and Consequences of Indirect Adsorbate Interactions on Metals." Phys Rev Lett 85, 1910-13 (2000).
P. Hyldgaard, M. Persson, et al., "Long-ranged adsorbate–adsorbate interactions mediated by a surface-state band." J Phys: Condens Matter 12, L13-L19 (2000).
S. U. Nanayakkara, et al., "Long-Range Electronic Interactions at a High
Temperature: Bromine Adatom Islands on Cu (111). "Phys Rev Lett 98, 206108 (2007).
N. Knorr, et al., "Long-range adsorbate interactions mediated by a two-dimensional electron gas." Phys Rev B 65, 115420 (2002).
V. S. Stepanyuk, et al., "Quantum interference and long-range adsorbate-adsorbate interactions." Phys Rev B 68, 205410 (2003).
M. Ternes, M. Pivetta, F. Patthey, W. D. Schneider, "Creation, electronic properties, disorder, and melting of two-dimensional surface-state-mediated adatom superlattices." Prog Surf Sci 85, 1-27 (2010).
M. M. Kamna, S. J. Stranick, P. S.Weiss, "Imaging Substrate-Mediated Interactions." Science 274, 118-9 (1996).
M. L. Merrick, W. W. Luo, K. A. Fichthorn. "Substrate-mediated interactions on solid surfaces: theory, experiment, and consequences for thin-film morphology." Prog Surf Sci 72, 117-34 (2003).
K. Kim, et al., "A role for graphene in silicon-based semiconductor devices." Nature (London) 479, 338-44 (2011).
H. C. Neto, et al., "The electronic properties of graphene." Rev Mod Phys 81, 109 (2009).
S. LeBohecS, J. Talbot, E. G. Mishchenko, "Attraction-repulsion transition in the interaction of adatoms and vacancies in graphene." Phys Rev B 89, 045433 (2014).
A.V. Shytov, D. A. Abanin, L. S. Levitov, "Long-Range Interaction between Adatoms in Graphene. " Phys Rev 103, 016806 (2009).
G. T. de Laissardiere, D. Mayou, "Conductivity of Graphene with Resonant and Nonresonant Adsorbates." Phys Rev Lett 111, 146601 (2013).
V. V. Mkhitaryan, E. G. Mishchenko, "Resonant finite-size impurities in graphene, unitary limit, and Friedel oscillations." Phys Rev B 86, 115442 (2012).
U. Aktürk, M. Tomak "Bismuth doping of graphene." Appl Phys Lett 96, 081914 (2010).
T. Eelbo, et al., "Adatoms and Clusters of 3d Transition Metals on Graphene: Electronic and Magnetic Configurations." Phys Rev Lett 110, 136804 (2013).
M. Gyamfi, et al., "Orbital selective coupling between Ni adatoms and graphene Dirac electrons." Phys Rev B 85, 161406(R) (2012).
X. Liu, et al., "Metals on Graphene: Interactions, Growth Morphology, and Thermal Stability." Crystals 3, 79 (2013).
D. Marchenko, et al., "Giant Rashba splitting in graphene due to hybridization with gold." Nat Commun 3, 1232 (2012).
S. M. Binz, et al., "High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene." Phys Rev Let 109, 026103 (2012).
X. Liu, et al., "Fe-Fe adatom interaction and growth morphology on graphene." Phys. Rev. B 84, 235446 (2011).
C.-L. Song, et al., "Charge-Transfer-Induced Cesium Superlattices on Graphene." Phys Rev Lett 108, 156803 (2012).
L. Li, et al., "Phase Transitions of Dirac Electrons in Bismuth." Science 321, 547-50 (2008).
Ph. Hofmann, "The surfaces of bismuth: Structural and electronic properties." Prog Surf Sci 81, 191-245 (2006).
T. E. Huber, et al., "Quantum confinement and surface-state effects in bismuth nanowires." Physica E 37, 194-9 (2007).
M. R. Black, et al., "Infrared absorption in bismuth nanowires resulting from quantum confinement." Phys Rev B 65, 195417 (2006).
Y. Koroteev, et al., "Strong Spin-Orbit Splitting on Bi Surfaces." Phys Rev Lett 93, 046403 (2004).
S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, J.C.A. Huang, "Thermally Activated Interaction of Co Growth with ZnO (101 ̅0) Surface." J Phys Chem C 117, 17540-7 (2013).
J. H. Lai, S. H. Su, H.-H. Chen, J.C.A. Huang, C.-L .Wu, "Stabilization of ZnO polar plane with charged surface nanodefects. " Phys Rev B 82, 155406 (2010).
S. W. Poon, W. Chen, E. S. Tok, A.T.S.Wee, "Probing epitaxial growth of graphene on silicon carbide by metal decoration." Appl Phys Lett 92, 104102 (2008).
J.-T. Sun, et al., "Energy-Gap Opening in a Bi (110) Nanoribbon Induced by Edge Reconstruction." Phys Rev Lett 109, 246804 (2012).
P. E. Blöchl, "Projector augmented-wave method." Phys Rev B 50, 17953 (1994).
G. Kresse, D.Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method." Phys Rev B 59, 1758 (1999).
G. Kresse, J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." Phys Rev B 54, 11169 (1996).
F. Varchon, et al., "Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate." Phys Rev Lett 99, 126805 (2007).
F. Varchon, P. Mallet, J.-Y. Veuillen, L. Magaud, "Ripples in epitaxial graphene on the Si-terminated SiC (0001) surface." Phys Rev B 77, 235412 (2008).
J.-Y. Veuillen, et al., " Interface structure of graphene on SiC: an ab initio and STM approach." J Phys D 43, 374008 (2010).
R. Balog, et al., "Atomic Hydrogen Adsorbate Structures on Graphene." J Am Chem Soc 131, 8744-5 (2009).
P Mallet, et al., "Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy." Phys Rev B 86, 045444 (2012).
L. Meng, et al., "Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer." Appl Phys Lett 100, 091601 (2012).
G.-H. Chen, M. E. Raikh, "Exchange-induced enhancement of spin-orbit coupling in two-dimensional electronic systems." Phys Rev B 60, 4826 (1999).
H. Huang, et al., "Scanning Tunneling Microscope and Photoemission Spectroscopy Investigations of Bismuth on Epitaxial Graphene on SiC (0001)." J Phys Chem C 118, 24995-9 (2014).
J. Frédéric, F. Fernande, S. Robert, "Fourier transform analysis of STM images of multilayer graphene moiré patterns." Carbon 83, 48-52 (2015).
A. H. C. Neto, et al., "The electronic properties of graphene." Rev. Mod. Phys. 81, 109-162 (2009).
D. Marchenko, et al., "Giant Rashba splitting in graphene due to hybridization with gold." Nat. Commun. 3, 1232 (2012).
T. Eelbo, et al., "Adatoms and Clusters of 3d Transition Metals on Graphene: Electronic and Magnetic Configurations." Phys. Rev. Lett. 110, 136804 (2013).
Y. M. Lin, et al., "100-GHz transistors from wafer-scale epitaxial graphene." Science 327, 662-662 (2010).
F. Bonaccorso, et al., "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage." Science 347, 1246501 (2015).
P. Hofmann, "The surfaces of bismuth: Structural and electronic properties." Prog. Surf. Sci. 81, 191-245 (2006).
S. Bobaru, et al., "Competing allotropes of Bi deposited on the Al13Co4 (100) alloy surface." Phys. Rev. B 86, 214201 (2012).
T.E. Huber, et al., "Quantum confinement and surface-state effects in bismuth nanowires." Physica E 37, 194–199 (2007).
M. R. Black, et al., "Infrared absorption in bismuth nanowires resulting from quantum confinement." Phys. Rev. B 65, 195417 (2002).
A. K. Wanekaya, "Applications of nanoscale carbon-based materials in heavy metal sensing and detection." Analyst 136, 4383−4391 (2011).
A. Merkoci, et al., "Bismuth Film Combined with Screen-Printed Electrode as Biosensing Platform for Phenol Detection." Electroanalysis 22, 1429-1436 (2010).
D. Shan, et al., "Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds." Biosens. Bioelectron. 24, 3671-3676 (2009).
C. C. Mayorga-Martinez, et al., "Bismuth nanoparticles for phenolic compounds biosensing application." Biosensors Bioelectron. 40, 57-62 (2013).
Y.L. Li, et al., "Bismuth oxide: a new lithium-ion battery anode." J. Mater. Chem. A 1, 12123–12127 (2013).
E.D. Wachsman & K.T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells." Science 334, 935-939 (2011).
C.-L. Song, et al., "Charge-Transfer-Induced Cesium Superlattices on Graphene." Phys. Rev. Lett. 108, 156803 (2012).
R. Balog, et al., "Atomic Hydrogen Adsorbate Structures on Graphene." J. Am. Chem. Soc. 131, 8744–8745 (2009).
F. Varchon, P. Mallet, J. Veuillen & L. Magaud, "Ripples in epitaxial graphene on the Si-terminated SiC (0001) surface." Phys. Rev. B 77, 235412 (2008).
F. Joucken, F. Frising & R. Sporken, "Fourier transform analysis of STM images of multilayer graphene moiré patterns." Carbon 83, 48–52 (2015).
P. Mallet, et al., "Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy." Phys. Rev. B 86, 045444 (2012).
V. W. Brar, et al., "Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy." Phys. Rev. Lett. 104, 036805 (2010).
H. Huang, et al., "Scanning Tunneling Microscope and Photoemission Spectroscopy Investigations of Bismuth on Epitaxial Graphene on SiC (0001)." J. Phys. Chem. C 118, 24995−24999 (2014).
Y. Girard, et al., "Growth of Bi on Cu (111): Alloying and dealloying transitions." Surf. Sci. 617, 118-123 (2013).
K. H. L. Zhang, et al., "Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag (111)." Phys. Rev. B 83, 235418 (2011).
C. Kato, Y. Aoki & H. Hirayama, "Scanning tunneling microscopy of Bi-induced Ag (111) surface structures." Phys. Rev. B 82, 165407 (2010).
K. Nakada & A.Ishii, in Graphene Simulation (ed Gong, J. R.) Ch. 1, 1–20 (InTech, 2011).
K. T.Chan, J. B. Neaton & M. L. Cohen, "First-principles study of metal adatom adsorption on graphene." Phys. Rev. B 77, 235430 (2008).
H.-H. Chen, et al., "Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature." Carbon 93, 180-186 (2015).
J.-T. Sun, et al., "Energy-Gap Opening in a Bi (110) Nanoribbon Induced by Edge Reconstruction." Phys. Rev. Lett. 109, 246804 (2012).
S. Yaginuma, et al., "Electronic Structure of Ultrathin Bismuth Films with A7 and Black-Phosphorus-like Structures." J. Phys. Soc. Jpn. 77, 014701 (2008).
Y. M. Koroteev, G. Bihlmayer, E.V. Chulkov & S. Blügel, "First-principles investigation of structural and electronic properties of ultrathin Bi films." Phys. Rev. B 77, 045428 (2008).
S. H. Su, et al., "Thermally Activated Interaction of Co Growth with ZnO (101̅0) Surface." J. Phys. Chem. C 117, 17540–17547 (2013).
J. H. Lai, et al., "Stabilization of ZnO polar plane with charged surface nanodefects." Phys. Rev. B 82, 155406 (2010).
P.E. Blöchl, "Projector augmented-wave method." Phys Rev B 50, 17953 (1994).
G. Kresse & D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method." Phys Rev B 59, 1758 (1999).
G. Kresse & J.Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." Phys Rev B 54, 11169 (1996).
S. W. Poon, W. Chen, E. S. Tok & A. T. S. Wee, "Probing epitaxial growth of graphene on silicon carbide by metal decoration." Appl. Phys. Lett. 92, 104102 (2008).




論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-06-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-06-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw