進階搜尋


下載電子全文  
系統識別號 U0026-2007201216184000
論文名稱(中文) 含鎳廢觸媒資源化回收有價金屬之研究
論文名稱(英文) A hybrid process for recovery valuable materials from Ni-containing spent hydrodesulfurization catalysts
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 吳俊毅
研究生(英文) Jun-Yi Wu
電子信箱 n4893123@mail.ncku.edu.tw
學號 n48931239
學位類別 博士
語文別 中文
論文頁數 94頁
口試委員 指導教授-申永輝
口試委員-詹武忠
口試委員-胡紹華
口試委員-蕭明謙
口試委員-溫紹炳
中文關鍵字 加氫脫硫  廢觸媒      溶媒萃取  尖晶石結構 
英文關鍵字 spent hydrodesulfurization (HDS) catalyst  hydrometallurgy  nickel (Ni)  cobalt (Co) and solvent extraction 
學科別分類
中文摘要 國內針對每年超過20,000噸加氫脫硫廢觸媒,回收業者利用傳統鹼焙燒、浸漬與純化回收釩、鉬有價金屬。但其衍生超過每年14,000噸含鎳廢觸媒理應逕行資源化,回收1~3%的鎳、0.5~1%的鈷、硫酸鋁或氧化鋁等有價金屬並解決現行含鎳廢觸媒委託清除處理或轉運至中國大陸的問題。彙整含鎳廢觸媒之有價金屬流佈,其中2010年全世界鎳礦生產量近1,600,000公噸,澳洲與古巴是主要鎳資源蘊藏國家。至於鈷礦生產量在2010年全世界近90,000公噸,剛果、中國與俄羅斯為主要鈷資源蘊藏國家。釩礦生產量2008年為55,500公噸,釩主要供給國家為中國、南非、俄羅斯等三國,大部分釩皆來自其他礦物提煉的副產物為原料。鉬資源存於自然界主要是輝鉬礦(MoS2),其常與銅礦石共生,鉬礦生產量2008年為218,000公噸,釩主要供給國家為中國、美國與智利等三國。
利用乾濕式合併處理,酸浸漬部份,針對鋁溶出而言,以1,200℃,造粒條件為最高,回收率達46.36%;針對其他金屬而言,造粒故可提高Ni及Co之回收率,分別為51.37%及75.22%,但顯然不及濕式處理溶出率高。Co、Mo、Ni、V四成份之硫酸溶液,首先以萃取劑D2EHPA將Mo、V萃至油相,再以不同之水相進行反萃,以2.5MH2SO4反萃V;以15%NH4OH反萃Mo,利用不同的反萃條件將Mo、V分離。Co、Ni則維持在(液)水相,再以萃取劑Cyanex272進行萃取,結果顯示,Co將可被萃至油相,Ni維持在水相;油相在以濃度為4M的硫酸進行反萃,將Co反萃至水相,如此可將Co、Ni分離,以利後續回收與純化。由於含鎳廢觸媒為業者處理廢加氫脫硫觸媒中回收釩、鉬後,所殘留的固體產物且為尖晶石結構,依據文獻與理論不易利用傳統焙燒與酸浸漬溶出鎳、鈷目的金屬之處理流程,達到有價金屬回收需求,因此處理現況為轉運至中國大陸作冶煉廠提煉為鎳原料或採安定化掩埋處理,不但有污染環境之疑慮、高溫冶煉耗能且無法回收其中的有價金屬資源(鎳、鈷與硫酸鋁或氧化鋁)。本研究方法為將含鎳廢觸媒研磨成粉狀,採用濕式冶金處理噴水於硫酸浸漬液中之逆流方式(突破傳統酸浸漬回收率不高方式),利用強酸加氧化劑及噴水,有效破壞尖晶石結構,以自身放熱反應促進反應進行,加上後段的溶媒萃取純化反應,此資源化處理流程不僅節能,更使鈷回收率達到85%以上,鎳回收率達到95%以上。以濕式冶金技術為基礎回收鈷、鎳,不僅沒有乾式焙燒高耗能與二氧化碳排放缺點,利用自身放熱反應更能響應節能減碳新趨勢具新穎性之創新技術。
針對含鎳廢觸媒採4Hs濕式實驗結果之以實驗編號4為最佳,推斷可能原因,添加強氧化劑,且藥劑量也足夠,達到破壞含鎳廢觸媒尖晶時結構之目的,另外,由於反應過程在添加濃硫酸後加熱,促進後段噴熱水達到大量自身放熱反應溫度達172℃,遠優於傳統酸浸漬或酸浸漬加熱之效果,因此效果最好。但操作成本相對提高,包括雙氧水的藥劑成本,濕式反應的加熱,都是將來實廠化需考量的因素,解決方式:可以尋求其他較便宜的強氧化劑取代,或改採曝氣型式,或導入廠內餘熱,或改變水噴入(噴嘴)型式或噴入自身反應時間。
經濟評估計算後需負擔1億4千多萬元/年,但若考量近3年來國際金屬鎳與鈷之最高行情單價,鎳為54,000美金/噸,鈷為36.2美金/磅,及國內逐漸無掩埋場窘境,整體經濟評估結果呈現淨利高達新台幣2億8仟多萬元/年,將來若實廠設置,考量金屬價格波動為最大投資影響因子。
英文摘要 It is estimated that more than 10,000 tons of spent HDS catalysts are annually generated by the China Petroleum Corporation (CPC) and Formosa Petrochemical Corporation (FPCC) in Taiwan. Thus, the quantity of Blue Sludge produced yearly by roasting with Na2CO3 agent from 3 spent HDS catalysts recycling treatment companies is estimated to be 7,000 tons per year, the nickel and cobalt content in Blue Sludge were shown 3% and 0.5% significantly.
Spent HDS catalysts are usually regenerated 2 to 3 times before being discarded. Various methods of handling these spent HDS catalysts are available to refiners: they can be used as secondary raw material source. Nevertheless, Spent HDS catalysts contribute a significant amount of the solid wastes generated in the petrochemical industry. These spent catalysts have been discarded for landfill in the past, but environmental pollution of soil contaminated by these waste catalysts has become a serious problem. Increasing environmental concerns and legislation regarding the disposal of hazardous residues are forcing companies and countries to process their own waste products and residues, Spent HDS catalysts have been classified as hazardous wastes by the EPA in the USA. In short, the spent HDS catalyst wastes have become an environmental problem, and at the same time, it has presented an opportunity for a new business to rejuvenate, recycle and convert the spent HDS catalysts to environmentally acceptable safe materials for recycle. Several alternative methods such as disposal in landfills, reclamation of metals, regeneration/rejuvenation and reuse, and utilization as raw materials to produce other useful products are available to the refiners to deal with the spent catalyst problem. Thus, these processes can be broadly classified into the following 4 groups: (1) minimization spent HDS catalyst waste generation, (2) utilization to produce new catalysts and other useful materials, (3) recycling through recovery of metals and (4) treatment of spent catalysts for safe disposal. In the previous paper, the main processes of recovering metals from spent HDS catalysts are roasting and solvent extraction purification method, but recovering metals with low yield about 60%. As the main body of the catalyst, carrier Al2O3 failed to have a good recovery simultaneously, and this also leads to another new pollution. Therefore, the aim of this paper was to recover valuable materials of Ni, Co and Al2(SO4)3 and recovering metals with high yield over 80% in spent HDS (Al2O3-based) catalysts.
This research scheme relates to a new treatment method for recovering Ni and Co metal value from spent hydrodesulfurization (HDS) catalyst materials (Blue Sludge, BS) by 4Hs and solvent extraction processes, and more particularly to catalyst materials which have been used in hydrocarbon refining processes, comprising compounds of cobalt (Co), nickel (Ni), molybdenum (Mo) and vanadium (V) on supports which contain aluminum oxide (Al2O3). This work aims at describing a optimum operation conditions and a new recovery process of valuable elements present in spent HDS catalysts. The influences of catalyst particle size, reaction temperature, reaction time, additive agents, and solid/ liquid ratio were investigated. The insoluble matter obtained after treatment of the 4Hs process was characterized and elements were recovered by solvent-extraction techniques. Attention was attracted to the final wastes generated. The spent HDS catalyst with H2O2-oxidiation, Hot, H2SO4-leaching, H2O-exothermic reaction (4Hs) and solvent extraction hybrid treatment processes allowed a good valuable metals recovery. The filtrate was essential for recovering, separation and purity Ni with high yield of over 95% by solvent extraction with extraction agents Ni recovery was very high. The optimized experimental parameters are much less drastic than the conventional hydrometallurgical and pyrometallurgical routes proposed in the research. The main advantages of recovery valuable materials of Ni, Co and Al2(SO4)3 from Blue Sludge by a new hydrometallurgical treatment process. The main reason of recovering metals with high yield over 80% that the formation of spinel structure was dissolvable for this may be attributed to spontaneous exothermic reaction temperature strongly from the inverse treatment way. The hybrid treatment procedure will help reduce the environmental burden and enhance high economic benefit.
論文目次 目錄
摘 要 Ⅰ
ABSTRACT Ⅳ
誌 謝 Ⅶ
總 目 錄 Ⅷ
表 目 錄 ⅩⅠ
圖 目 錄 ⅩⅢ
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.3 研究動機及目的 4
1.4 研究架構及內容 6
1.5 論文內容說明 8
第二章 加氫脫硫廢觸媒之有價金屬資源流向分佈 11
2.1 鎳金屬資源流向分佈 11
2.2 鈷金屬資源流向分佈 14
2.3 釩與鉬金屬資源流向分佈 18
第三章 文獻回顧與資源化現況 33
3.1 商用觸媒應用途徑及廢觸媒分類 33
3.2 廢觸媒資源化原理 34
3.3 廢觸媒資源化方法 35
3.4 廢觸媒國內文獻彙整 41
3.5 廢觸媒國外文獻彙整 42
第四章 含鎳廢觸媒之性質研究 46
4.1 含鎳廢觸媒樣品XRF定性半定量分析 46
4.2 含鎳廢觸媒樣品之pH與三成份分析 47
4.3 含鎳廢觸媒樣品全量分析 48
4.4 含鎳廢觸媒樣品之SEM電子顯微分析 50
4.5 含鎳廢觸媒樣品之TG/DTA(質差-熱重分析儀)分析 52
4.6 含鎳廢觸媒樣品之XRD分析 52
4.7 含鎳廢觸媒樣品之先導實驗 55
第五章 含鎳廢觸媒資源化技術之研究 57
5.1 實驗方法與處理流程 57
5.2 實驗結果與討論 63
5.3 經濟可行性效益之評估 78
5.4 小結論 81
第六章 結論與建議 83
6.1 結論 83
6.2 建議 86
參考文獻 87
自 述 94

表目錄
表2-1 冶煉鎳技術流程表 13
表2-2 世界鎳礦產量、儲量和儲量基礎 13
表2-3 世界鈷礦產量、儲量和儲量基礎 17
表2-4 世界各國釩礦床種類與可回收之共生資源 19
表2-5 各種含釩礦石與冶煉富集的精礦品位 20
表2-6 世界釩礦產量、儲量和儲量基礎 21
表2-7 世界鉬礦產量、儲量和儲量基礎 21
表2-8 市場上流通的釩鐵代表性組成 23
表2-9 鉬鐵的化學成分 25
表3-1 廢觸媒之分類與排出之狀況 37
表3-2 廢觸媒國內文獻彙整表 41
表3-3 廢觸媒國外文獻彙整表 42
表4-1 含鎳廢觸媒樣品XRF基本成分定性半定量分析結果 46
表4-2 含鎳廢觸媒樣品之pH分析結果 47
表4-3 含鎳廢觸媒樣品之三成份分析結果 48
表4-4 含鎳廢觸媒樣品之ICP-OES全量分析結果 49
表4-5 含鎳廢觸媒樣品之SEM顯微分析-EDS元素分佈分析結果 50
表4-6 含鎳廢觸媒焙燒後金屬XRF定性半定量分析結果 56
表4-7 含鎳廢觸媒經硫酸浸漬後金屬溶出百分比XRF分析結果 56
表4-8 含鎳廢觸媒經硫酸浸漬後濾液分析結果 56
表5-1 含鎳廢觸媒經乾式冶煉處理之鎳與鈷回收率 65
表5-2 含鎳廢觸媒樣品濕式實驗操作條件與金屬回收率 70
表5-3含鎳廢觸媒乾濕合併式/4Hs濕式資源化實驗結果比較表 82



圖目錄
圖1-1 研究架構示意圖 7
圖2-1 含釩物質一般提煉流程 27
圖2-2 Carnotite釩礦石之提煉流程 28
圖2-3 磷釩礦石之提煉流程 29
圖2-4 含釩廢觸媒之提煉流程 30
圖2-5 含釩石油灰渣之提煉流程 31
圖2-6 鉬之一般提煉流程 32
圖3-1 美國Gulf化學公司已商業化廢觸媒資源化處理流程圖 36
圖4-1 含鎳廢觸媒樣品之SEM-Mapping元素分佈分析結果 51
圖4-2 含鎳廢觸媒樣品SEM顯微分析照片 52
圖4-3 含鎳廢觸媒樣品之TG/DTA分析圖 53
圖4-4 含鎳廢觸媒樣品之XRD分析結果 54
圖5-1 含鎳廢觸媒資源化處理流程圖 60
圖5-2 含鎳廢觸媒資源化乾式回收處理流程圖 61
圖5-3 含鎳廢觸媒資源化濕式回收處理流程圖 62
圖5-4 含鎳廢觸媒資源化乾式處理流程參數圖 66
圖5-5 含鎳廢觸媒資源化濕式回收處理結果圖 71
圖5-6 濕式冶煉回收後氧化鋁再生產物XRD分析圖 72
圖5-7 含鎳廢觸媒資源化濕式回收處理結果質量平衡圖 73
圖5-8 含鎳廢觸媒資源化乾式模組放大試驗流程參數圖 76
圖5-9 含鎳廢觸媒濕式冶煉模組放大試驗流程圖 77
參考文獻 1. E Bezak-Mazur, L Dabek, M Repelewicz, A Swiatkowski, The use of extraction methods for recovering metals and carrier spent carbon sorbents and catalysts, Adsorption Science and Technology, Vol.20, No.6, p.565-p.572, 2002.
2. Gabriel Plascencia-Barrera, Juliana G Gutierrez-Paredes, Fidel Reyes-Carmona, Reactor design for nickel recovery from HDS waste catalyst, Proceedings of the TMS Fall Extraction and Processing Conference, p.795-p.806, 2000.
3. Guy Gravey, Jean Le Goff and Christian Gonin, Process for preparation of anhydrous metallic chlorides from waste catalysts, US Patent 4,182,747.
4. Keiji Toukai, Kenji Kirishima, Haruo Shibayama and Hideo Hanawa, Process for recovering valuabie metal from waste catalyst, US Patent 5,431,892.
5. Mark de Boer, Johannes Wilhelmus Maria Sonnemans, Pankaj Himatlal Desai and Jaap Enters, Process for preparing a hydroprocessing catalyst from waste hydroprocessing catalyst, US Patent 6,127,299.
6. Myerson, Allan S. and Ernst William R., Regeneration of HDS catalysts, US Patent 4,698,321.
7. Nagib and Seham, Statistical study of molybdenum recovery from molybdenum waste catalyst, TMS Annual Meeting, EPD Congress2004-Proceedings of the Symposium Sponsored by the Extraction and Processing Division of the Minerals, Metals and Materials Society, TMS, p.585-p.595, 2004.
8. Olga Kizinievic, Ramune Zurauskiene, Algis Spokauskas and Romualdas Maciulaitis, Application of Catalyst Waste to Ceramics Made of Raw Materials, Material Science, Vol.11, No.1, p.51-p.56, 2005.
9. Sanga Seiji and Nishimura Yoichi, Sewer waste water treating agent Produced from waste cracking catalyst, US Patent 3,960,760.
10. 李清華,蔡尚林,廢觸媒富集裝置,中華民國專利214140。
11. 李清華,蔡尚林,廢觸媒富集裝置(追加一),中華民國專利263795。
12. 蔡尚林,喬泰智,夏浩中,廢加氫脫硫觸媒中釩、鉬之分離方法,中華民國專利241209。
13. 夏浩中,喬泰智,蔡尚林,適用於分離一硫酸水溶液中鋁、鈷及鎳離子的萃取劑組成物及分離方法,中華民國專利218895。
14. 許貫中,曾銞生,蘇南,混凝土摻料之製造方法,中華民國專利562784。
15. 盧信沖,FCC廢觸媒添加於混凝土製程之應用,網路資料。
16. 朱小蓉,陳柏宇,觸媒市場與環保要求的研發策略,化工資訊月刊,1996。
17. 張國慶,廢觸媒資源化技術與福誼公司資源化成果,環保產業雙月刊第31期,2005。
18. C.K. Gupta and N. Krishnamurthy, Extractive metallurgy of vanadium, Elsevier Scientific Publishing Company, 1992.

19. U.S. Geological Survey, 2006 Minerals Yearbook:Vanadium, 2008.
20. 張文鉦,2007年鉬業年評,中國鉬業,Vol.31,No.6,p.3-p.11,2007。
21. U.S. Geological Survey, Mineral Commodity Summaries, January 2006.
22. U.S. Geological Survey, Mineral Commodity Summaries, January 2008.
23. Kuck, P. H., Vanadium, Mineral Commodity Profiles, Edit by Bureau of Mines U. S. A. Department of the Interior, 1983.
24. 釩-礦石、合金礦,三井物產(株)製鋼原料部編,Industial Rare Metal,No.101,p.101~p.105,1990。
25. 材料手冊工:鋼鐵材料,中國材料科學學會編印,1982。
26. 鉬-礦石與製品市場,三井物產(株)製鋼原料部編,Industial Rare Metal,NO.101,p.133~p.136,1990。
27. International Molybdenum Encyclopedia VolumeⅡ, Edit by Alexander Sutulov, Santiago, Chile, 1978.
28. Henry E. Hilliard, The materials flow of vanadium, IC9409, Edit by Bureau of Mines U. S. A. Department of the Interior, 1994.
29. John J. Mcketta, Molybdenum and Molybdenum Alloys Supply-Demand Relationships, Chemical Pross ess Encyclopedia, 1983.
30. 蔡尚林,廢觸媒回收處理案例介紹,環保工程月刊,十月號,128-137頁,2001。
31. 台灣關稅總局網頁歷年統計資料,http://www.customs.gov.tw/StatisticWeb,2008。
32. Pingwei Zhang and Katsutoshi Inoue, Recovery of metal values from spent hydrodesulfurization catalysts by liquid-liquid extraction, Energy & Fuels, Vol.9, p.231-p.239, 1995.
33. Vincent Ruiz, Eric Meuz, and Sebastien Diliberto, and Vincent Georgeaud, Hydrometallurgical treatment for valuable metals recovery from spent CoMo/Al2O3 catalyst. 1. improvement of soda leaching of an industrially roasted catalyst, Industrial & Engineering Chemistry Research, Vol 50, p.5295-p.5306, 2011.
34. Vincent Ruiz, Eric Meuz, Michel Schneider, and Vincent Georgeaud, Hydrometallurgical treatment for valuable metals recovery from spent CoMo/Al2O3 catalyst. 2. oxidative leaching of an unroasted catalyst using H2O2, Industrial & Engineering Chemistry Research, Vol 50, p.5307-p.5315, 2011.
35. Marin S. Villarreal, B. I. Kharisov, L.m. Torres-Martinez, and V. N. Elizondo, Recoveryof vanadium and molybdenum from spent petroleum catalyst of PEMEX, Industrial & Engineering Chemistry Research, Vol 38, p.4624-p.4628, 1999.
36. M. Marafi and A. Stanislaus, Spent hydroprocessing catalyst management: A review part Ⅰ. Developments in hydroprocessing catalyst waste reduction and use, Conservation and Recycling, Vol.52, p.859-p.873, 2008.
37. M. Marafi and A. Stanislaus, Spent hydroprocessing catalyst management: A review part Ⅱ. Advances in metal recovery and safe disposal methods, Resources, Conservation and Recycling, Vol.53, p.1-p.26, 2008.
38. I. Gaballah and M. Djona, Recovery of Co, Ni, Mo, and V from unroasted spent hydrorefining catalysts by selective chlorination, Metallurgical and Materials Transactions B, Vol.26B, p. 41-p.50, 1995.
39. Kyung Ho Park, D. Mohapatra and B. Ramachandra Reddy, Selective recovery of molybdenum from spednt HDS catalyst using oxidative soda ash leach/carbon adsorption method, Journal of Hazardous Materials B138, p.311-p.316, 2006.
40. Francesco Ferella, Albena Ognyanova, Ida De Michelis, Giuliana Taglieri and Francesco Veglio, Extraction of metals from spent hydrotreating catalysts: Physico-mechanical pre-treatments and leaching stage, Journal of Hazardous Materials 192, p.176-p.185, 2011.
41. Francesco Ferella, Albena Ognyanova, Ida De Michelis, Giuliana Taglieri and Francesco Veglio, Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction, Journal of Hazardous Materials, 2012.
42. Jyoti Kushwaha, Archana Agrawal, A. K. Upandhyay, T. R. Mankhand and K. K. Sahu, Recovery of molybdenum from spent HDS catalyst leach liquor by solvent extraction using aliquat 336, 15th International Conference on Non-ferrous metals, Kolkata, Tech p.1-p.8, 2011.
43. Wladyslawa Mulak, Anna Szymczych, Anna Lesniewicz and Wieslaw Zyrnicki, Preliminary results of metals leaching from a spent hydrodesulphization (HDS) catalyst, Physicochemical Problems of Mineral Processing, Vol. 40, p.69-p.76, 2006.
44. 胡曉靜,蔣微旗,趙景紅,姜莉,王有福,王玉萍,趙恆英,含釩廢觸媒除油制構及五氧化二釩測定方法的研究,冶金分析,第28冊,第6卷,p.57-p.59,2008。
45. 宋克祥,占先進,李培佑,從含釩石油廢觸媒中提取釩、鉬的工藝研究,濕法冶金,第27冊,第2卷,2008。
46. 劉爾祥,張耀春,王國傳,李東雷,王連和,姜東民,從含鎳廢觸媒中回收鎳的工藝實驗,岩礦測試,第22冊,第2卷,2003。
47. 劉波,童慶雲,李國良,氧化焙燒法回收廢釩觸媒中的釩,四川大學學報(工程科學版),第34冊,第2卷,2002。
48. 許碧亰,從廢釩觸媒中回收釩氧化物,化工進展,第21卷,第3期,2002。
49. 薛澤春,李連之,劉穎,對從廢釩觸媒中回收五氧化二釩實驗的改進,牡丹江師範學院學報(自然科學版),總72期,第3卷,2010。
50. 何顯達,郭學益,李平,黃凱,許開華,從人造金鋼石觸媒酸洗廢液中回收鎳、鈷和錳,濕法冶金,第27冊,第2卷,2008。
51. 宋克祥,占先進,李培佑,廢鋁基鉬觸媒劑鈣化焙燒、純鹼液浸取提釩工藝試驗,鐵合金,總169期,第2卷,2003。
52. 薛福連,廢鎳觸媒的綜合利用,Non-ferrous metals recycling and utilization,2006。
53. 周長祥,李茂巨,回寒星,王強,王卿,廢鎳觸媒氨浸法制取-氧化鎳,山東化工,第34卷,p.37-p.44,2005。
54. 彭毅,楊保祥,劉淑清,攀枝花硫鈷精礦浸出淨化液鎳鈷分離及鈷產品制備的試驗研究,四川有色金屬,第3期,p.26-p.30,2006。
55. 任靖,曹光傳,王安杰,胡永康,H2S對Ni-Mo催化劑HDS性能的影響,石油學報(石油加工),第26卷,第5期,p.666-p.672,2010。
56. 劉公召,宋幫勇,從HDS廢催化劑提釩殘渣中回收鎳的研究,礦產綜合利用,第2期,p.39-p.41,2005。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw