進階搜尋


下載電子全文  
系統識別號 U0026-2007201116242500
論文名稱(中文) 雙極性有機場效電晶體應用於互補式反相器之研究
論文名稱(英文) Organic complementary inverters based on ambipolar field-effect transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英) Institute of Electro-Optical Science and Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 郭子豪
研究生(英文) Tz-Hau Guo
學號 L76981240
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-王右武
中文關鍵字 有機薄膜電晶體  雙極性  駢五苯  反相器  操作穩定度  照光 
英文關鍵字 Organic thin-film transistors  Ambipolar  Pentacene  Inverters  Stability  Illumination 
學科別分類
中文摘要 本論文為探討雙極性有機薄膜電晶體的特性與應用,主要分為兩部分,第一部分探討駢五苯成長在不同高分子修飾層上所顯示的N型通道操作特性;第二部分則使用聚苯乙烯當作修飾層,將其擁有的雙極性特性應用於互補式反相器上,並量測其電壓轉換曲線及操作穩定度。
第一部分探討駢五苯成長在不同高分子修飾層上的薄膜特性對電晶體N型通道的影響,當中所使用的高分子修飾層為聚甲基丙烯酸甲酯以及聚苯乙烯。我們發現聚苯乙烯修飾層擁有較低的極性項表面能、表面較為平坦且無孔洞,成長在聚苯乙烯上的駢五苯薄膜其結晶程度較好、非次序程度也較小,使得電子通道較容易形成,於是我們推論上述特性可能是造成以聚苯乙烯當作修飾層的電晶體元件擁有較小臨界電壓的原因。
第二部分使用聚苯乙烯當作修飾層製作電晶體元件,並將其擁有的雙極性傳輸特性應用到互補式反相器上。我們發現所製作出來的互補式反相器擁有不錯的電壓轉換曲線,且元件均能穩定的操作至少10000秒以上,也能重複操作100次以上;我們另外也對反相器元件進行兩種照光靈敏度的實驗(照光時間長短對元件的影響、照光強度對元件的影響),從實驗1結果得知元件特性只和〝有沒有照光〞有關係,和照光時間長短無關;實驗2則是說明了互補式反相器的開關電壓會隨著照光強度而改變。
英文摘要 We studied the effects of polymeric dielectric modification layers on the ambipolar transport properties of pentacene-based organic thin-film transistors (OTFTs). In the first stage, the N-channel characteristics of pentacene-based OTFTs with different polymeric dielectric modification layers were investigated. In the second stage, the organic complementary inverters based on ambipolar pentacene-based OTFTs with a polystyrene (PS) modification layer were explored.
In stage 1, we used polymethylmethacrylate (PMMA) and PS as polymeric modification layers to fabricate the pentacene-based OTFTs with ambipolar properties. The influence of the surface properties of the polymeric modification layers on electrical properties was studied. Pentacene films that were grown on the PS surface displayed higher crystal quality and lower crystal distortion than did those grown on the PMMA surface. This result is attributed to the PS having a smoother surface with a lower polar term of the surface energy than does PMMA. This attribute would benefit the formation of the N-channel of pentacene films near the PS surface, thereby resulting in the early-induced threshold voltage of OTFTs.
In stage 2, we demonstrated organic CMOS inverters equipped with two ambipolar pentacene-based OTFTs with a PS modification layer. The inverters exhibit an excellent input/output transfer curve and maintain good stability. Furthermore, the correlations between the electrical characteristics of the inverters and illumination were investigated. We observed that electrical performance depended on illumination intensity, but was independent of illumination time.
論文目次 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
致謝……………………………………………………………………Ⅳ
目錄……………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅷ
圖目錄…………………………………………………………………Ⅸ
第一章 有機薄膜電晶體簡介 ………………………………..………1
1-1 有機半導體簡介……………………………………………..……1
1-2 有機薄膜電晶體概論………………………………………..……2
1-2-1 雙極性有機薄膜電晶體……………………………..……2
1-2-2 有機薄膜電晶體的基本架構…………………………..…2
1-2-3 雙極性有機薄膜電晶體之發展與應用………………..…3
1-3 場效應電晶體的工作原理…………………………………..……4
1-3-1 有機半導體傳輸機制…………………………………..…4
1-3-2 有機薄膜電晶體之操作………………………………..…4
1-3-3 雙極性有機薄膜電晶體的原理與特性………………..…6
1-4 互補式金氧半場效電晶體操作原理………………………..……7
1-4-1 互補式金氧半場效電晶體簡介……………………..……7
1-4-2 CMOS反相器原理…………………………………….……7
1-4-3 CMOS反相器操作特性……………………………….……8
1-5 本論文研究目的……………………………………………..……9
第二章 實驗方法與分析工具…………………………………..……17
2-1 實驗材料…………………………………………………………17
2-1-1 有機半導體材料…………………………………………17
2-1-2 二氧化矽絕緣材料………………………………………17
2-1-3 高分子絕緣材料…………………………………………17
2-2 元件製程…………………………………………………………18
2-2-1 基板清洗…………………………………………………18
2-2-2 旋轉塗佈…………………………………………………18
2-2-3 熱蒸鍍成長有機半導體及金屬電極……………………18
2-3 分析工具…………………………………………………………18
2-3-1 電性分析…………………………………………………18
2-3-2 接觸角……………………………………………………19
2-3-3 原子力顯微鏡……………………………………………20
2-3-4 X-ray薄膜繞射儀(XRD) ……………………………..…20
第三章 高分子修飾層對N通道駢五苯電晶體電特性的影響 ……28
3-1 前言………………………………………………………………28
3-2 實驗方法…………………………………………………………31
3-3 結果與討論………………………………………………………31
3-3-1 電特性分析與結果………………………………………31
3-3-2 遲滯現象…………………………………………………32
3-3-3 接觸角量測結果與分析…………………………………32
3-3-4 表面型態量測結果與分析………………………………33
3-3-5 X-ray薄膜繞射量測結果與分析 ………………………34
3-4 綜合結論…………………………………………………….……35
第四章 有機雙極性互補式反相器之電特性研究……………...……48
4-1 前言……………………………………………………….………48
4-2 實驗方法…………………………………………………….……50
4-3 結果與討論…………………………………………………….…51
4-3-1 電特性分析與結果…………………………………….…51
4-3-2 Ambipolar CMOS 特性分析與結果…………………...…51
4-3-3 Ambipolar CMOS 操作穩定度量測分析………………...52
4-3-4 照光對Ambipolar CMOS 特性的影響…………………..53
4-4 綜合結論………………………………………………………….54
第五章 總結與未來展望…………………………………………...…76
參考文獻………………………………………………………….……78
參考文獻 [1] Y. Guo, G. Yu, Y. Liu, "Functional Organic Field-Effect Transistors," Advanced Materials, vol. 22, pp. 4427-4447, 2010.
[2] R. A. Street, "Thin-Film Transistors," Advanced Materials, vol. 21, pp. 2007-2022, 2009.
[3] F. C. Krebs, M. Helgesen, R. Sondergaard, "Advanced materials and processes for polymer solar cell devices," Journal of Materials Chemistry, vol. 20, pp. 36-60, 2010.
[4] J. R. Durrant and T. M. Clarke, "Charge Photogeneration in Organic Solar Cells," Chemical Reviews, vol. 110, pp. 6736-6767, 2010.
[5] M. A. Baldo, M. E. Thompson, S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature, vol. 403, pp. 750-753, 2000.
[6] K. Leo, K. Walzer, B. Maennig, M. Pfeiffer, "Highly efficient organic devices based on electrically doped transport layers," Chemical Reviews, vol. 107, pp. 1233-1271, 2007.
[7] C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer and T. Mappes , "Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate," Microelectronic Engineering, vol. 87, pp. 693-695, 2010.
[8] I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chemical Reviews, vol. 107, pp. 1272-1295, 2007.
[9] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, "Low-cost all-polymer integrated circuits," Applied Physics Letters, vol. 73, pp. 108-110, 1998.
[10] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, "Large-scale complementary integrated circuits based on organic transistors," Nature, vol. 403, pp. 521-523, 2000.
[11] G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens and D. M. de Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Materials, vol. 3, pp. 106-110, 2004.
[12] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, "Pentacene-based radio-frequency identification circuitry," Applied Physics Letters, vol. 82, pp. 3964-3966, 2003.
[13] P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers, "Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors," Applied Physics Letters, vol. 78, pp. 3592-3594, 2001.
[14] T. Someya, H. E. Katz, A. Gelperin, A. J. Lovinger, A. Dodabalapur, "Vapor sensing with alpha, omega-dihexyl- quarterthiophene field-effect transistors: The role of grain boundaries," Applied Physics Letters, vol. 81, pp. 3079-3081, 2002.
[15] H. Klauk, M. Halik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, C. Dehm, "Flexible organic complementary circuits," IEEE Transactions on Electron Devices, vol. 52, pp. 618-622, 2005.
[16] T. D. Anthopoulos, G. Gelinck, P. Heremans, K. Nomoto, "Organic Transistors in Optical Displays and Microelectronic Applications," Advanced Materials, vol. 22, pp. 3778-3798, 2010.
[17] A. Babe, J. D. Wind, S. A. Jenekhe, "Ambipolar charge transport in air-stable polymer blend thin-film transistors," Advanced Functional Materials, vol. 14, pp. 891-898, 2004.
[18] M. Shkunov, R. Simms, M. Heeney, S. Tierney, I. McCulloch, "Ambipolar field-effect transistors based on solution-processable blends of thieno[2,3-b]thiophene terthiophene polymer and methanofullerenes," Advanced Materials, vol. 17, pp. 2608-2612, 2005.
[19] K. Lee, S. Cho, J. Yuen, J. Y. Kim, A. J. Heeger, "Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene," Applied Physics Letters, vol. 89, pp. 153505-153507, 2006.
[20] F. C. Chen and Y. J. Huang, "Air Stable Ambipolar Organic Field-Effect Transistors and Complementary-Like Inverters Prepared with Surface-Modified Gate Dielectrics," Electrochemical and Solid State Letters, vol. 12, pp. H252-H255, 2009.
[21] R. Ye, M. Baba, Y. Oishi, K. Mori, K. Suzuki, "Air-stable ambipolar organic thin-film transistors based on an organic homostructure," Applied Physics Letters, vol. 86, pp. 253505-253507, 2005.
[22] T.-I. Jeon, K.-J. Kim, C. Kang, I. H. Maeng, J.-H. Son, K. H. An, J. Y. Lee, Y. H. Lee, "Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region," Journal of Applied Physics, vol. 95, pp. 5736-5740, 2004.
[23] S. J. Kang, Y. Yi, C. Y. Kim, K. Cho, J. H. Seo, M. Noh, K. Jeong, K.-H. Yoo, C. N. Whang, "Ambipolar organic thin-film transistors using C60/pentacene structure: Characterization of electronic structure and device property," Applied Physics Letters, vol. 87, pp. 233502-233504, 2005.
[24] S. D. Wang, K. Kanai, Y. Ouchi, K. Seki, "Bottom contact ambipolar organic thin film transistor and organic inverter based on C60/pentacene heterostructure," Organic Electronics, vol. 7, pp. 457-464, 2006.
[25] R. Schmechel, M. Ahles, H. von Seggern, "A pentacene ambipolar transistor: Experiment and theory," Journal of Applied Physics, vol. 98, pp. 084511-084516, 2005.
[26] T. D. Anthopoulos, C. Tanase, S. Setayesh, E. J. Meijer, J. C. Hummelen, P. W. M. Blom, D. M. de Leeuw, "Ambipolar organic field-effect transistors based on a solution-processed methanofullerene," Advanced Materials, vol. 16, pp. 2174-2179, 2004.
[27] Y. Kunugi, K. Takimiya, N. Negishi, T. OTsubo, Y. Aso, "An ambipolar organic field-effect transistor using oligothiophene incorporated with two [60]fullerenes," Journal of Materials Chemistry, vol. 14, pp. 2840-2841, 2004.
[28] R. W. I. de Boer, A. F. Stassen, M. F. Craciun, C. L. Mulder, A. Molinari, S. Rogge, A. F. Morpurgo, "Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors," Applied Physics Letters, vol. 86, pp. 262109-262111, 2005.
[29] T. Takahashi, T. Takenobu, J. Takeya, Y. Iwasa, "Ambipolar organic field-effect transistors based on rubrene single crystals," Applied Physics Letters, vol. 88, pp. 033505-033507, 2006.
[30] E. C. P. Smits, T. D. Anthopoulos, S. Setayesh, E. van Veenendaal, R. Coehoorn, P. W. M. Blom, B. de Boer, D. M. de Leeuw, "Ambipolar charge transport in organic field-effect transistors," Physical Review B, vol. 73, pp. 205316(1-9), 2006.
[31] H. Tada, H. Touda, M. Takada, K. Matsushige, "Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions," Applied Physics Letters, vol. 76, pp. 873-875, 2000.
[32] C. R. Kagan, S. R. Saudari, Y. J. Lin, Y. Lai, "Device Configurations for Ambipolar Transport in Flexible, Pentacene Transistors," Advanced Materials, vol. 22, pp. 5063-5068, 2010.
[33] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, "Solution-processed ambipolar organic field-effect transistors and inverters," Nature Materials, vol. 2, pp. 678-682, 2003.
[34] J. Cornil, J.-L. Bredas, J. Zaumseil, H. Sirringhaus, "Ambipolar transport in organic conjugated material," Advanced Materials, vol. 19, pp. 1791-1799, 2007.
[35] F. Cicoira and C. Santato, "Organic light emitting field effect transistors: Advances and perspectives," Advanced Functional Materials, vol. 17, pp. 3421-3434, 2007.
[36] E. B. Namdas, P. Ledochowitsch, J. D. Yuen, D. Moses, A. J. Heeger, "High performance light emitting transistors," Applied Physics Letters, vol. 92, pp. 183304-183306, 2008.
[37] J. S. Swensen, J. Yuen, D. Gargas, S. K. Buratto, A. J. Heeger, "Light emission from an ambipolar semiconducting polymer field effect transistor: Analysis of the device physics," Journal of Applied Physics, vol. 102, pp. 013103-013107, 2007.
[38] M. Ahles, R. Schmechel, H. von Seggern, "Complementary inverter based on interface doped pentacene," Applied Physics Letters, vol. 87, pp. 113505-113507, 2005.
[39] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, H. von Seggern, "Complementary organic field effect transistors by ultraviolet dielectric interface modification," Applied Physics Letters, vol. 89, pp. 182105-182107, 2006.
[40] J. C. Ribierre, T. Fujihara, T. Muto, T. Aoyama, "Patterning by laser annealing of complementary inverters based on a solution-processible ambipolar quinoidal oligothiophene," Organic Electronics, vol. 11, pp. 1469-1475, 2010.
[41] L. Li, Q. Tang, H. Li, W. Hu, "Molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadyl phthalocyanine," Journal of Physical Chemistry B, vol. 112, pp. 10405-10410, 2008.
[42] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, "Pentacene organic thin-film transistors-Molecular ordering and mobility," IEEE Electron Device Letters, vol. 18, pp. 87-89, 1997.
[43] R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn, G. Scoles, "Pentacene ultrathin film formation on reduced and oxidized Si surfaces," Physical Review B, vol. 67, pp. 125406(1-7), 2003.
[44] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Advanced Materials, vol. 14, pp. 99-117, 2002.
[45] L. F. Drummy and D. C. Martin, "Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films," Advanced Materials, vol. 17, pp. 903-907, 2005.
[46] V. Coropceanu, M. Malagoli, D. A. da Silva Filho, N. E. Gruhn, T. G. Bill, J.-L. Brédas, "Hole- and electron-vibrational couplings in oligoacene crystals: Intramolecular contributions," Physical Review Letters, vol. 89, pp. 275503(1-4), 2002.
[47] N. E. Gruhn, D. A. da Silva Filho, T. G. Bill, M. Malagoli, V. Coropceanu, A. Kahn, J.-L. Brédas, "The vibrational reorganization energy in pentacene: Molecular influences on charge transport," Journal of the American Chemical Society, vol. 124, pp. 7918-7919, 2002.
[48] M. Taniguchi, H. Kawaguchi, T. Kawai, "Control of device characteristics of ambipolar organic field-effect transistors using the hydroxyl in organic insulator," Synthetic Metals, vol. 158, pp. 355-358, 2008.
[49] S. E. Fritz, T. W. Kelley, C. D. Frisbie, "Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer," Journal of Physical Chemistry B, vol. 109, pp. 10574-10577, 2005.
[50] S.-Y. Kwak, C. G. Choi, B.-S. Bae, "Effect of Surface Energy on Pentacene Growth and Characteristics of Organic Thin-Film Transistors," Electrochemical and Solid State Letters, vol. 12, pp. G37-G39, 2009.
[51] P. S. Abthagir, Y.-G. Ha, E.-A. You, S.-H. Jeong, H.-S. Seo, J.-H. Choi, "Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method," Journal of Physical Chemistry B, vol. 109, pp. 23918-23924, 2005.
[52] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, "Electron traps and hysteresis in pentacene-based organic thin-film transistors," Applied Physics Letters, vol. 87, pp. 243512-243514, 2005.
[53] C. A. Lee, D.-W. Park, K.-D. Jung, B.-J. Kim, Y. C. Kim, J. D. Lee, B.-G. Park, "Hysteresis mechanism in pentacene thin-film transistors with poly(4-vinyl phenol) gate insulator," Applied Physics Letters, vol. 89, pp. 262120-262122, 2006.
[54] B. Kippelen, X.-H. Zhang, S. P. Tiwari, "Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability," Organic Electronics, vol. 10, pp. 1133-1140, 2009.
[55] R. Ruiz, A. Papadimitratos, A. C. Mayer, G. G. Malliaras, "Thickness dependence of mobility in pentacene thin-film transistors," Advanced Materials, vol. 17, pp. 1795-1798, 2005.
[56] Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, H. E. Katz, "Organic complementary ring oscillators," Applied Physics Letters, vol. 74, pp. 2714-2716, 1999.
[57] W. Geens, S. E. Shaheen, C. J. Brabec, AIP Conf. Proc. 14th Int. Winter School/Euroconference Electron. Properties Novel Mater./Mol. Nanostruct. 544, 516, 2000
[58] C. W. Chu, Dhananjay, C.-W. Ou, C.-Y. Yang, M.-C. Wu, "Ambipolar transport behavior in In2O3/pentacene hybrid heterostructure and their complementary circuits," Applied Physics Letters, vol. 93, pp. 033306-033308, 2008.
[59] E. Kuwahara, H. Kusai, T. Nagano, T. Takayanagi, Y. Kubozono, "Fabrication of a logic gate circuit based on ambipolar field-effect transistors with thin films of C60 and pentacene," Chemical Physics Letters, vol. 413, pp. 379-383, 2005.
[60] R. Ye, M. Baba, K. Suzuki, K. Mori, "Fabrication of highly air-stable ambipolar thin-film transistors with organic heterostructure of F16CuPc and DH-α6T," Solid-State Electronics, vol. 52, pp. 60-62, 2008.
[61] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, S. Setayesh, E. J. Meijer, C. Tanase, J. C. Hummelen, P. W. M. Blom, "Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors," Applied Physics Letters, vol. 85, pp. 4205-4207, 2004.
[62] T. Nishikawa, S.-I. Kobayashi, T. Nakanowatari, T. Mitani, T. Shimoda, Y. Kubozono, G. Yamamoto, H. Ishii, M. Niwano, Y. Iwasa, "Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification," Journal of Applied Physics, vol. 97, pp. 104509-104513, 2005.
[63] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom, D. M. de Leeuw, "Air-stable complementary-like circuits based on organic ambipolar transistors," Advanced Materials, vol. 18, pp. 1900-1904, 2006.
[64] D. M. de Leeuw, E. C. P. Smits, S. Setayesh, T. D. Anthopoulos, M. Buechel, W. Nijssen, R. Coehoorn, P. W. M. Blom, B. de Boer, "Near-infrared light-emitting ambipolar organic field-effect transistors," Advanced Materials, vol. 19, pp. 734-738, 2007.
[65] N. Benson, C. Melzer, R. Schmechel, H. von Seggern, "Electronic states at the dielectric/semiconductor interface in organic field effect transistors," Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 475-487, 2008.
[66] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, G. Horowitz, "Organic inverter circuits employing ambipolar pentacene field-effect transistors," Applied Physics Letters, vol. 89, pp. 033512-033514, 2006.
[67] C. W. Chu, C.-Y. Yang, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, Dhananjay, "Realization of ambipolar pentacene thin film transistors through dual interfacial engineering," Journal of Applied Physics, vol. 103, pp. 094519-094524, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw