進階搜尋


下載電子全文  
系統識別號 U0026-2007201115470900
論文名稱(中文) 運用超音波氧化脫硫技術將廢輪胎裂解油成為再生能源之研究
論文名稱(英文) DEVELOPMENT OPTIMIZATION OF ULTRASOUND-ASSISTED OXIDATIVE DESULFURIZATION OF PYROLYSIS OIL FROM WASTE TIRE
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 陳登鑑
研究生(英文) Teng-Chien Chen
電子信箱 joily@ceg.com.tw
學號 n4895121
學位類別 博士
語文別 英文
論文頁數 124頁
口試委員 口試委員-萬孟瑋
口試委員-李文智
口試委員-溫紹炳
指導教授-申永輝
口試委員-林志忠
口試委員-蔡政賢
中文關鍵字 氧化脫硫  超音波  乾淨能源  廢輪胎  裂解油 
英文關鍵字 Oxidative Desulfurization  Ultrasound  Pyrolysis Oil  Waste Tires  Clean Energy 
學科別分類
中文摘要 近年來隨著科技進步,經濟快速成長,伴隨著能源需求增加,以及全球化石類能源日漸耗竭,再生能源發展技術又面臨實用性及經濟成本考量等多項瓶頸在2008年中,原油價格曾經突破每桶 USD 150元。因此,如何將廢棄物資源化、能源化將更顯重要。世界各先進國家皆戮力於研發廢棄物資源再利用及技術產業化,如:以高分子廢棄橡、塑膠裂解再生燃油等。
本研究即以超音波氧化脫硫技術應用於廢輪胎熱裂解油之脫硫,以達成資源再利用及生產乾淨能源為目的,並結合超音波氧化技術、相間轉移技術及金屬觸媒氧化技術等進行熱裂解油脫硫試驗;初次研究結果顯示:裂解油經雙氧水超音波氧化脫硫試驗後,裂解油中含硫濃度從8800 ppm降低至6377 ppm,其脫硫效率僅為27.0%左右。若改變實驗控制參數,分別探討:1. 金屬催化劑對於氧化脫硫效益之影響:實驗結果顯示脫硫效率隨著催化劑添加量增加而提高;2. 超音波震盪時間之影響:裂解油在雙氧水超音波氧化脫硫效率隨時間增加而提高,反應時間為20分鐘時其脫硫效率達到最佳狀態。3. 極性氧化有機硫去除技術之影響:評估使用氧化鋁吸附方式脫硫與極性溶劑萃取方式脫硫,以氧化鋁吸附方式可達最佳脫硫效益。最後,以最佳化之研究參數進行脫硫試驗:裂解油經脫硫實驗後之含硫濃度為2800 ppm,脫硫效率則可達到68.2%;此外,脫硫後之油品,其含硫量皆達到我國針對柴油及燃料油訂定之總硫管制標準。因此,本研究證實超音波氧化脫硫技術加上氧化鋁吸附劑方式可有效達到熱裂解油資源化再利用之目的。
本研究亦發現Thiophene 在氧化脫硫方式中最難去除之有機硫。本研究利用超音波震盪時間差異,及不同TMC、PTA、及H2O2 添加量,並利用ANOVA統計檢定方式評估出嘗試找出對於Thiophene的最佳脫硫參數佳。最後最佳脫硫參數為Thiophene溶液:H2O2:PTA: TMC 為1:1.5:0.005:0.01 並且超音波震盪時間為 20 分鐘。
利用這最佳參數亦運用於Thiophene,Benzthiophener及Dibenzothiophene 混合溶液中,發現將近73.5% Thiophene, 89.9% benzothiophene,以及100% dibenzothiophene 被氧化。比較三種有機硫之物理特性可以發現:Thiophene之沸點及電子雲密度比其他的有機硫為低,低沸點容易造成反應時蒸發,低電子雲密度造成在氧化過程之中不易被氧化,因此造成脫硫效益不佳之原因。
本研究之目為以超音波氧化脫硫連續流方式,處理廢輪胎裂解油中之高硫化物,減少燃燒使用時造成環境污染、致超過環保法規標準。因而造成廢輪胎裂解油無法上市販賣及、資源無法再利用等問題。廢裂解油完成脫硫後即可再利用之燃料油。本研究分析此技術之成本效益及風險分析。
根據研究分析結果顯示:超音波氧化脫硫利用單一連續流脫硫方式,可達裂解油脫硫效益68.2%,脫硫成本為$0.132/L,若是串連兩組脫硫設備進行裂解油脫硫,裂解油脫硫效益可達90.9%,而單一脫硫成本則為$0.289/L。根據成本效益評估,單一連續流脫硫方式為最佳連續硫脫硫方式。計算其效益包含社會成本效益之下,超音波氧化脫硫方式,以台灣為例,每日淨利可達$ 3236.4/day。就脫硫效益而言超音波氧化脫硫技術運用在廢輪胎裂解油上,為具有經濟效益及資源永續利用之技術。
英文摘要 In recent years, the increasing world population and rapid industrial development has increased the consumption of fossil fuel-derived oils. In response to the resulting exhaustion of fossil fuel energy, many countries around the world are investigating methods of waste energy recovery and reuse, including oil recovery from the pyrolysis process of waste tires. There are many different organic sulfur compounds in the recovered oil. Thiophene is considered as the most refractory organic sulfur compound in oxidative desulfurization. This study has executed the ultrasound assisted oxidative desulfurization (UAOD) process to optimize the thiophene oxidation under bench scale. Four control factors, including the duration effects of sonication time, and the amount effects of transition metal catalyst, phase transfer agent and hydrogen peroxide, were carefully examined. The best operation condition evaluated by the analysis of variance (ANOVA) was confirmed at volume ratio of thiophene solution and H2O2, PTA, and TMC at 1:1.5:0.005:0.01 in 20 minutes sonication time, where almost 73.5% of thiophene, 89.9% of benzothiophene, and 100% of dibenzothiophene were oxidized to their corresponding sulfones. Moreover, the electron density on the sulfur atom of various compounds and their oxidation rate constants, including thiophene, benzothiophene, dibenzothiophene, and their methyl-substituted derivatives, were also examined. The oxidative reactivity of sulfur compounds was increased with the increasing number of electron density on sulfur atom. Thiophene that is commonly considered to be more difficult to oxidize is attributed to the combination effect of low electron density of the sulfur atom and low boiling temperature under mild oxidation reaction
This study also investigates the efficiency of an ultrasound-assisted oxidative desulfurization (UAOD) process in sulfur reduction from diesel oil and the pyrolysis oil from waste tires treatment. The results indicate that the oxidation efficiency increases as the doses of transition metal catalyst are increased. Longer sonication time also enhances the oxidation process, apparently through the biphasic transfer of oxidants, which results in a high yield of organic sulfur oxidation products. The best desulfurization efficiency was 99.7% (2.67 ppm sulfur remaining) and 89% (800 ppm sulfur remaining) for diesel and pyrolysis oils, respectively, via a process executed by two UAOD units connected in series and combined with solid adsorption using 30 g of Al2O3 in 6 cm columns. These batch experiment results demonstrate clean waste energy recovery and utilization, while fulfilling the requirements of Taiwan EPA environmental regulations (sulfur concentrations less than 5000 ppm).
The objective of the present study is cost and benefit analysis of ultrasound assisted oxidative desulfurization continuous flow process removal of organic sulfur compounds form pyrolysis oil. Cost-benefit analysis (CBA) is useful for considering UAOD technology by consistently appraising proposals in terms of society’s total environmental and economic cost-benefits. Cost-benefit analysis were done with refer to two separate studies on removal of sulfur compounds which were one UAOD unit and two UAOD units connected in a series. Two methods were compared with regard to their cost and percentage in sulfur removal. According to the result of the comparison, cost per unit in one UAOD unit removal was calculated $0.132/L and the ratio of sulfur removal was 68%, whereas the two UAOD units connected in a series removal was $0.289/L and 90.91%. Therefore, it was seen that cost per unit in two UAOD units connected in a series and sulfur removal ratio were higher than one UAOD method. For the cost-benefits analysis, the optimum desulfurization efficiency was accomplished at 68.2% (2800 ppm sulfur left) for the pyrolysis oil with one UAOD unit in series and combined with solid adsorption under 6-cm columns with 30 g of Al2O3. The monetary value of the social benefits is around $742.328/day for one set of UAOD unit. The best gross income for desulfurized pyrolysis oil is$ 3236.4/day in Taiwan and $11076.3/day in the U.S.A.
The experimental ultrasound assisted oxidative desulfurization continuous flow process proposed in the present study appears to be an excellent solution to future environmental challenges that will soon be imposed by new regulations. Finally, the continuous flow was evaluated. The best economic benefits and the least risk were found with the UAOD continuous flow processes.
論文目次 ABSTRACT I
ACKNOWLEDGMENTS VII
TABLE OF CONTENTS VIII
LIST OF FIGURES XII
LIST OF TABLES XIV
ABBREVIATIONS XV
1. INTRODUCTION 1
1.1 Introduction 1
1.1.1 Environmental Policy 1
1.1.2 Environmental Concern 3
1.1.3 Environmental Regulation on Fossil Fuel 4
1.2 Desulfurization Techniques 6
1.2.1 Hydro-Desulfurization 6
1.2.2 Oxidative Desulfurization 8
1.2.3 Liquid-Liquid Extraction 11
1.2.4 Biodesulfurization 12
1.2.5 Ion-Ion Exchange 15
1.2.6 Adsorption for Sulfur Capture from Diesel Stream 15
1.3 Improvement Oxidative Desulfurization 18
1.3.1 Ultrasound-Assisted Oxidative Desulfurization 18
1.3.2 UAOD with Solid Absorption 19
1.4 Aims of the Research 21
2. THEORETICAL BACKGROUND 23
2.1 Introduction 23
2.1.1 Concept Model 24
2.1.2 Oxidants 26
2.1.3 Transition Mental Catalyst 27
2.1.4 Phase Transfer Catalysis 29
2.1.5 Ultrasound 30
3. UAOD Optimal Conditions for Model Sulfur Compounds 33
3.1 Introduction 33
3.2 Method and Analysis 36
3.2.1 Method 36
3.2.2 GC-SCD Quantitative Analysis 36
3.2.3 Statistic Analysis for Experimental Optimization 37
3.3 Result and Discussion 39
3.3.1 Duration Effect of Sonication Time 39
3.3.2 Amounts Effect of Transitional Metal Catalyst
(TMC) 40
3.3.3 Amounts Effect of Hydrogen Peroxide 41
3.3.4 Amounts Effect of Phase Transfer Agency (PTA) 42
3.3.5 Statistic Analysis of Optimized UAOD
Conditions for Thiophene 44
3.3.6 The Optimized UAOD Conditions applied to
Major Sulfur Compounds 45
3.3.7 Relationship between the Reactivity and Electron
Density on Sulfur Atom 46
3.4 Conclusion 51
4. The UAOD Optimal Conditions Appling into Diesel and
Pyrolysis Oil 53
4.1 Introduction 53
4.2 Method and Analysis 55
4.2.1 Materials 55
4.2.2 UAOD Methodology 56
4.2.3 GC-SCD Quantitative and Qualitative Analysis 59
4.3 Result and Disscussion 60
4.3.1 Characterization of Diesel and Pyrolysis Oils 60
4.3.2 Amount Effects of Transitional Metal Catalyst 62
4.3.3 Duration Effects of Sonication Time 66
4.3.4 Sulfone Separation Effects of Solvent Extraction
and SolidAdsorption after the UAOD Process 68
4.3.5 Effect of Continuous UAOD units Connected in
Series and Combined with Solid Adsorption 75
4.3.6 The quality analysis for desulfurized pyrolysis
oil 78
4.4 Conclusions 81
5. Economic Analysis 82
4.1 Introduction 82
5.2 Method and Analysis 84
5.2.1 Economical Analysis 84
5.2.2 Risk Analysis 85
5.3 Result and Disscussion 86
5.3.1 Cost-Benefits Analysis 86
5.3.2 Risk Analysis for UAOD 93
5.4 Conclusions 99
6. SUMMARY AND RECOMMENDATION 100
6.1 Summary 100
6.2 Recommendation 104
Reference 108
參考文獻 Aida, T., 1994. Method of recovering organic sulfur compounds from liquid oil EP 565 324.
Al-Karaki, G.N., 1998. Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza. 8, 41-45.
Annual Book of ASTM Standards, 2005. Standard test method for determination of sulfur compounds in natural gas and gaseous fuels by gas chromatography and chemiluminescence, Vol 05.05.
Apostolakis, G.E., 2004. How useful is quantitative risk assessment? Risk Anal. 24, 515-20
Baker, L.C.W., Glick, D.C., 1998. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. J. Chem. Rev. 98 (1), 3-50.
Ballistreri, F. P., Bazzo. A., Tomaselli. G. A., Toscano, R. M., 1992. Reactivity of Peroxopolyoxo Complexes. Oxidation of Thioethers, Alkenes, and Sulfoxides by Tetrahexylammonium Tetrakis (diperoxomolybdo)phosphate. J. Org. Chem. 57, 7074-7077.
Battaglini, A., Lilliestam, J., Haas, A., Patt, A., 2009. Development of SuperSmart Grids for a more efficient utilisation of electricity from renewable sources. J. Cleaner Prod. 17, 911-918.
Baum, S. D., 2009. Cost-benefit analysis of space exploration: Some ethical considerations. Space Policy. 25, 75-80.
Biltz, J., 1967. Fundamentals of Ultrasonic. New York Plenum Press, London.
Bortolini, O., Furia, F.D., Modena, G., Seraglia, R., 1985. Metal Catalysis in Oxidation by Peroxides. Sulfide Oxidation and Olefine Epoxidation by Dilute Hydrogen Peroxide Catalyzed by Molybdeum and Tungsten Derivatives under Phase Transfer Conditions. J. Org. Chem. 50, 2688-2690.
Bruggen, B. V. D., Goossens, H., Everard, P.A., Stemge, K., Rogge, W., 2009. Cost-benefit analysis of central softening for production of drinking water. J. Environ. Manage. 91, 541–549.
Burmeister, M.S., Drummond, C.J., Pfisterer, E.A., Hysert, D.W., Sin, Y.O., Sime, K. J., Hawthorne, D. B., 1992. Measurements of volatile sulfur in beer using gas chromatography with a sulfur chemiluminescence detector. J. Am. Soc. Brew. Chem. 50(2), 53–58.
Campestrini, S., V., Furia, F.D. Modena, G., Bortolini, O., 1988. Metal Catalysis in Oxidation by Peroxides. Electrophilic Oxygen Transfer from Anionic, Coordinatively Saturated Molybdeum Peroxo Complexes. J. Org. Chem. 53, 5721-5724.
Charles, N.E., Kristin, L.R., John, R.C.W., Mark, F.A., 2002. Economic analysis in dermatology. J. Am. Acad. Dermatol. 46, 271–283.
Chen, T.C., Shen, Y.H., Lee, W.J., Lin, C.C., Wan, M.W., 2010. The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires. J. of Cleaner Prod.18,1850-1858.
Collins, F. M., Sharp, C., Lucy, A. R. 1997.Oxidative Desulphurisation of Oil via Hydrogen Peroxide and Heteropolyanion Catalysis. J Mol. Cat. A: Chem. 17, 397-402.
ConocoPhillips, http://www.fuelstechnology.com/szorbdiesel.htm, 2005.
Covert, C., 2001. How philips s zorb sulfur removal technology quickly came to life, World Refin. Pet. Refin. Sect.
Cunliffe, A.M., Williams, P.T., 1998. Composition of oils derived from the batch pyrolysis of tyres. J. Anal. Appl. Pyrol. 44 (2), 131–152.
Cypres, R., Bettens, B., 1989. In: Ferrero, G.L., Maniatis, K., Buekens, A., Bridgwater, A.V. (Eds.), Pyrolysis and Gasification. Elsevier Applied Science, London.
Dai, X., Yin, X., Wu, C., Zhang, W., Chen, Y., 2001. Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy. 26, 385–399.
Dehmlow, E. V. and Dehmlow, S. S., 1993. Phase Transfer Catalysis.VCH, New York.
Diener, E., Suh, E., 1997. Measuring quality of life: economic, social, and subjective indicators. Soc. Indic. Res.40 (1-2), 189-216.
Dodbiba, G., Takahashi, K., Sadaki, J., Fujita, T., 2008. The recycling of plastic wastes from discarded TV sets: comparing energy recovery with mechanical recycling in the context of life cycle assessment. J. of Cleaner Prod. 16, 458-470.
Dolbear , G.E. Bonde, S.E. Gore, W. Skov, E.R. 2000a. Prep. Am. Chem. Soc., Div. Pet. Chem. 45(2), 364.
Dolbear, G.E., Skov, E.R., 2000b. Prep. Pap. Am. Chem. Soc., Div. Pet. Chem. 45 (2), 375.
Dov`, V. G., Friedler, F., Huisingh, D., Klemesˇ, J. J., 2009. Cleaner energy for sustainable future. J. Cleaner Prod. 17, 889-895.
Etemadi, O., Yen, T., 2007a. Aspects of selective adsorption among oxidized sulfur compounds in fossil fuels. Energy Fuels. 21, 1622-1627.
Etemadi, O., Yen, T.F., 2007b. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels. J. Colloid. Interface. Sci. 313, 18-25.
Etemadi, O., Yen, T.F., 2007c. Selective adsorption in ultrasound assisted oxidative desulfurization process for fuel cell reformer applications. Energy Fuels. 21, 2250-2257.
Frye, C.G., Mosby, J.F. 1967. Kinetics of hydrodesulfurization, Chem. Eng. Prog. 63, 66-69.
Girgis, M.J., Gates, B.C. 1991. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Ind. Eng. Chem. 30: 2021.
Gonzalez, J.F., Encinar, J.M., Canito, J.L., Rodriguez, J.J., 2001. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis. 58, 667–683.
Graff, L., 1989. Spreadsheet applications in benefit/cost analysis. Comput. Ind. Eng. 17, 293-297.
Gupta, N., Roychoudhury, P. K., Deb, J. K.. 2005. Biotechnology of desulfurization of diesel: prospects and challenges. Appl. Microbiol. Biotechnol. 66,356-366.
Hansj¨urgens, B., 2004. Economic valuation through cost benefit analysis - possibilities and limitations. Toxicology. 205, 241–252.
Harvey, R.D., 2004. Policy dependency and reform: economic gains versus political pains. Agric. Econ. 31, 265–275.
Herbstman, S., Guptill, F. E. 1971. Desulfurization with a catalytic oxidation step US 3 565 793.
Hernandez-Maldonado, A. J., Yang, R. T. 2003. Desulfurization of Commercial Liquid Fuels by Selective Adsorption via -Complexation with Cu(I)-Y Zeolite, Ind. Eng. Chem. Res. 42, 3103-3110.
Hill, C. L., McCartha, C.M.P., 1995. Homogeneous catalysis by transition metal oxygen anion clusters. Coordi. Chem. Rev. 143, 407-455.
Houalla, M., Broderick, D.H., Sapre, A.V., Nag, N.K., De Beer, V.H., Gates, J. B.C., Kwart, H. 1980 Hydrodesulfurization of methyl-substituted dibenzothiophene catalyzed by sulfided CoO–MoO3/Al2O3, J. Catal. 61, 523-527.
International Energy Agency, 2010. Key World Energy Statistics.
Islam, M. R , Haniu, H., M. Beg. R. A., 2008. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel.87. 3112-3122.
Jitkarnka, S., Chusaksri, B., Supaphol, P., Magaraphan, R., 2007. Influences of thermal aging on properties and pyrolysis products of tire tread compound. J. Anal. Appl. Pyrolysis. 80, 269-276.
Jones., R. A., 2001. Quarternary ammonium salts: their use in phase-transfer catalysis. Academic Press.
Khan, E., Shen, C., Lin, H., 2006. Use of Low-Frequency Sonication for the Production of Biodegradable Dissolved Organic Carbon in Water. Environ. Eng .Sci.23 (2), 367-371.
Kilanowski, D.R., Teeuwen, H., De Beer, V.H.J., Gates, B.C., Schuit, B.C.A., Kwart, H., 1978. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO–MoO3/Al2O3: low-pressure reactivity studies. J. Catal. 55: 129-137.
Kong, L.Y., Li, G., Wang, X.S., 2004. Catalytic oxidative desulphurization of liquid fuels. Chemistry. 3, 178-184.
Kozhevnikov, I. V. 1998. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 98 (1), 171-198.
Lange, E.A., Lin, Q. 1998. Preparation of surfactants from a byproduct of fossil fuel biodesulfurization. American Chemical Society, Division of Petroleum Chemistry.43(4), 550-552.
Laresgoiti, M.F., Caballero, B.M., De, M.I., Torres, A., Cabrero, M.A ., Chomon, M.J., 2004. Characterization of the liquid products obtained in tire pyrolysis. J. Anal. Appl. Pyrol. 71, 917-934.
Leung, D. Y. C. and Wang, C. L., 1998. Kinetic study of scrap tyre pyrolysis and combustion. J. Anal. Appl. Pyrolysis. 45, 153-169.
Li, C., Jiang, Z., Gao, J., Yang, Y., Wang, S., Tian, F., Sun, F., Sun, X., Ying, P., Han, C., 2004. Ultra-deep desulfurization of diesel fuel: oxidation with recoverable catalyst assembled in emulsion. Chem. Eur. J. 10, 2277-2280.
Li, H.F., Lin, S.L., 2004. The Application of Impact Pathway Approach in Environmental Externalities Caused by SO2 Emission in Taichung Metropolitan Area. Master Thesis. Chaoyang University of Technology, Taiwan.
Li, Y., Zhao, D., Lin, J., Yuan, Q., 2009. Preliminary study on oxidative desulfurization of diesel via power ultrasound. Energy Sources, Part A. 31, 191–198.
Linguist, L., Pacheco, M. 1999. Enzyme-based diesel desulfurization offers energy, CO2 advantages. Oil Gas J. 97, 45-48.
Ma, X. L, Kim J. H., Song C. S., 2004. Nonlinear Response and Quenching Effect in GC-PFD and GC-PFPD for Quantitative Sulfur Analysis of Low-Sulfur Hydeocaborn Fuels. American Chemical Society, California
Mastral, A.M., Murillo, R., Callen, M.S., Garcia T., Snape, C. E., 2000. Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor. Energy Fuels. 14, 739-744.
McFarland, B. L., Boron, D. J., Deever, W. J., Meyer, J. A., Johnson, A. R., Atlas, R. M., 1998. Biocatalytic Sulfur Removal from Fuels: Applicability for Producing Low Sulfur Gasoline, Critical Reviews in Microbiology. 24(2), 99-147.
Mei, H., Mei, W., Yen, T.F., 2003. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel. 82(4), 405-414.
Messner, F., Zwirner, O ., Karkuschke, M., 2006. Participation in multi-criteria decision support for the resolution of a water allocation problem in the Spree River Basin. Land Use Policy. 23, 63-75.
Mishan, E.J., 1972. Cost–Benefit Analysis, second ed., Allen and Unwin, London.
Moiseev, I. I., in Murahashi, S. I., Davies, S. G., 1999. Transition Metal Catalysed Reactions, Blackwell Science, UK.
Monticello, D.J., 1998. Biodesulfurization of diesel fuels. Chem. Tech. 28 (7), 38-45.
Mousazadeh, H., Keyhani, A., Mobli, H., Bardi U., 2009. Technical and economical assessment of a multipurpose electric vehicle for farmers. J. Cleaner Prod.17, 1556-1562.
Murata, S., Murata, K., Kidena, K., Nomura, M.A., 2004. Novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes. Energy Fuels. 18(1), 116-121.
Naito T.S., Hirai, T., 2003. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil. Ind. Eng. Chem. Res. 42(24), 6034-6039.
Ngigi, S.N., Savenije, H.H.G., Rockstrom, J., Gachene, C.K., 2005. Hydro-economic evaluation of rainwater harvesting and management technologies: farmers’ investment options and risks in semi-arid Laikipia District of Kenya. Earth Planet. Sci. Lett. 30, 772-782.
Otsuki .S., T. Nonaka, T., Qian, W., Ishihara, A., Kabe, T., 1999. Oxidative desulfurization of middle distillate using ozone. J. of the Jap. Petro. Inst. 42(5), 315-320.
Otsuki, S., Nonaka, T., Takashima, N., Qian, W.H., Ishihara, A., Imai, T., Kabe, T., 2000. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels. 14(6), 1232-1239.
Palmer, K., Burtraw, D., Shih, J. S., 2007. The benefits and costs of reducing emissions from the electricity sector. J. Environ. Manage. 83, 115–130.
Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine. 2 (6), 559-572.
Pieter, J.H., Beukering, V., Janssen, M.A. 2001. Trade and recycling of used tyres in Western and Eastern Europe. Resour Conserv Recycl. 33,235-265.
Petrou, E., Mihiotis, A., 2007. Design of a factory’s supply system with biomass in order to be used as alternative fuel -A case study. Energy Fuels. 21 (6), 3718-3722.
Phillipson, J.J. 1971. Kinetics of hydrodesulfurization of light and middle distillates, Paper Presented at the American Institute of Chemical Engineers Meeting, Houston, TX.
Pope, M. T., 1983. Heteropoly and Isopoly Oxometalates; Springer-Verlag, Dordrecht, Netherlands.
Regli, S., Odom, R., Cromwell, J., Lustic, M., Blank, V., 1999. Benefits and costs of the IESWTR. J. Am .Water. Works. Assoc. 91, 148-158.
Rodriguez, I.M., Laresgoiti, M.F, Cabrero, M.A., Torres, A., Chomon, M.J., Caballero, B.M., 2001. Pyrolysis of scrap tyres. Fuel Process. Technol. 72, 9-22.
Royal Society., 1992. Risk Analysis, Perception and Management, Report of Society Study Group, The Royal Society. London .
Rynikiewicz C., 2008. The climate change challenge and transitions for radical changes in the European steel industry. J. Cleaner Prod. 16 (7), 781–789.
Sachdeve T.O., Pant K.K., 2010. Deep desulfurization on diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Process. Technol. 91, 1133-1138.
Salles, L., Aubry, C., Thouvenot, R., Robert, F., Doremieux-Morin, C., Chottard, G., Ledon, H., Jeannin, Y., Bregeault J. M., 1994. 31P and 183W NMR Spectroscopic Evidence for Novel Peroxo Species in the "H3[PW12O40].cntdot.y H2O/ H2O2" System. Synthesis and X-ray Structure of Tetrabutylammonium (.mu.-Hydrogen phosphato)bis(.mu.-peroxo)bis(oxoperoxotungstate) (2-): A Catalyst of Olefin Epoxidation in a Biphase Medium. J. Inorg. Chem. 33, 871-878.
Schultz, M.T., Small, M.J., Farrow, R.S., Fischbeck, P.S., 2004. State water pollution control policy insights from a reduced-form model. Water Resour. Res. ASCE.130, 150-159.
Sen, A., 2000. The discipline of cost-benefit analysis. J. of Legal Studies. 29(2), 931-952.
Sengupta S., Patil R. S., Venkatachalam P., 1996. Assessment of Population Exposure and Risk Zones due to Air Pollution Using the Geographical Information System. Comput. Environ. and Urban Systems. 20(3), 191-199.
Shaw, P.J.A., 2003. Multivariate statistics for the Environmental Sciences. Hodder-Arnold.
Shin Chang Company., 1992. The oil quality reference for the Pyrolysis oil.
Shiraishi, Y., Hara H., Komosawa, I.,2002. Oxidative Desulfurization Process for Light Oil Using Titanium Silicate Molecular Sieve Catalysts. J. Chem. Eng. Jpn. 35 (12), 1305-1311.
Strukul, G., in Strukul, G. 1992. Catalytic Oxidation with Hydrogen Peroxide as Oxidant. Kluwer Academic Publishers, Dordrecht
Shiraishi, Y., Hirai, T., Komasawa, I. A., 1998. Deep desulfurization process for light oil by photochemical reaction in an organic two-phase liquid-liquid extraction system. Ind. Eng. Chem. Res. 37, 203-211.
Sheldon, R. A. and Kochi, J. K., 1981. Metal-Catalyzed Oxidation of Organic Compounds. Academic Press, Inc., London
Sivakumar, V., Chandrasekaran, F., Swaminathan, G., Rao, P.G., 2009. Towards cleaner degreasing method in industries: ultrasound-assisted aqueous degreasing process in leather making. J. Cleaner Prod. 17, 101-104.
Song, C.and Ma, X., 2002. New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization. App. Cat. B: Environ. 41 (1-2), 207-238.
Starks, C., Liotta, C. and Halpern, M. 1994. Phase-Transfer Catalysis: Fundamentals, Applications & Industrial Perspectives. Chapman & Hall, Inc., New York.
Stehlik P., 2009. Contribution to advances in waste-to-energy technologies. J. Cleaner Prod. 17, 919-931.
Suri,R.P.S., Kamrajapuram, A. Fu, H. 2008. Ultrasound Destruction of Aqueous 2-Chlorophenol in Presence of Silica and Peroxide. Environ. Eng. Sci. 25 (10), 1447-1453.
Taiwan EPA, 2000, Cost and benefit in different waste tire treatments.
Te, M., Fairbridge, C. and Ring, Z. 2001. Oxidation Reactivities of Dibenzothiophenes in Polyoxometalate/H2O2 and formic acid/ H2O2 systems. Appl. Cat. A: Gen. 219, 267-280.
Tsai, W.T., Chou, Y.H., 2004. Government policies for encouraging industrial waste reuse and pollution prevention in Taiwan. J. Cleaner Prod. 13, 57-70.
Tsai,W.T.,2010. Analysis of the sustainability of reusing industrial wastes as energy source in the industrial sector of Taiwan. J. Cleaner Prod. 18(14), 1440-1445.
U.S.A. Environmental Protection Agency., 2005. Exhaust Emission Effects of Fuel Sulfur and Oxygen on Gasoline Non road Engines. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency.
Ucar S., Karagoz S., Ozkan A.R., Yanik J., 2005. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel. 84(14-15), 1884-1892.
Vasudevan, P.T., and Fierro, J.L.G., 1996. A review of deep hydrode-sulfurization catalysis, Catal. Rev. Sci. Eng. 38, 161.
Wan, M.W., Yen, T.F., 2007. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process. Appl. Catal. A. Gen. 319, 237-245.
Wan, M.W., Yen, T.F., 2008. Portable continuous ultrasound-assisted oxidative desulfurization unit for marine gas oil. Energy Fuels. 22, 1130-1135.
Ward, F. A., Velazquez, M. P., 2009. Incentive pricing and cost recovery at the basin scale. J. Environ. Manage. 90, 293-313.
Ward, F.A., 2009. Economics in integrated water management Environment. Model Software. 24, 948–958
World Health Organization., 2006. WHO challenge world to improve air quality. http://whalibdoc.who.int/press_release/2006/pr_52.pdf
Yadav, S.N., Wall, D.B., 1998. Benefit-cost analysis of best management practices implemented to control nitrate contamination of groundwater. Water Resour. Res. 34, 497-504.
Yen, T. F., Mei, H., and Lu, S. H. 2002. Oxidative Desulfurization of Fossil Fuels with Ultrasound, U.S. Patent 6,402,939.
Zabaniotou, A ., Andreou, K., 2010. Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. J. Cleaner Prod. 18, 784-790.
Zannikos, F., Lois, E., Stournas, S., 1995. Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel Process. Technol. 42, 35.
Zhu, W. S.; Li, H. M.; Jiang, X.; Yan, Y. S.; Lu, J. D.; He, L. N.;Xia, J. X. 2008. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids. Green Chem.10, 641-646.
Zabaniotou A. Lagoudakis, J. Toumanidou. E. Stavropoulos .G., 2002. Energetic utilization of used tires. Energy Sources. 24,843-854.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw