進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2006201916524300
論文名稱(中文) 生質物裂解油:製備、乳化及反應
論文名稱(英文) Biomass-derived pyrolysis oil: production, emulsification, and reaction
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 林柏志
研究生(英文) Bo-Jhih Lin
學號 P48031056
學位類別 博士
語文別 英文
論文頁數 141頁
口試委員 指導教授-陳維新
口試委員-張克勤
口試委員-江滄柳
口試委員-張嘉修
口試委員-張家欽
口試委員-萬皓鵬
口試委員-劉軒誠
口試委員-Anélie Pétrissans
口試委員-Khanh-Quang Tran
中文關鍵字 生質物與生質能  生質物裂解  生質油製備  生質物造粒  乳化  協合效應  燃料反應性  氧化反應交互作用  乳化劑與介面活性劑 
英文關鍵字 Biomass and bioenergy  Biomass pyrolysis  Bio-oil production  Biomass pellets  Emulsification  Synergistic effect  Fuel reactivity  Oxidative reaction interaction  Emulsifier and surfactant 
學科別分類
中文摘要 燃料來源及環境之永續發展為世界各國相當關注的重要議題,其中,生質燃料(biofuel)的開發已被視為減少化石燃料使用及降低二氧化碳排放的有效對策。生物質裂解(biomass pyrolysis)已被廣泛用於生質油製造,並且生質油被視為深具前瞻性之能源載體用以替代統化石燃料;乳化(emulsification),為生質油應用於柴油發動機及工業加熱中深具經濟效益之技術。本論文主要根據生物質裂解途徑以製備燃料之概念,包含生質油製備、生質油改值及改質後生質油之燃料應用做為研究框架;因此,本研究主要可分為三個部分:(1)生質物裂解製備生質油之特性;(2)生質油與柴油乳化;(3)乳化燃料之氧化反應。
第一部分之研究在於探討不同條件下之生質物裂解行為,並可分為兩個子研究項目。第一個子項目為加熱模式對於蔗渣裂解的影響,並且反應主要在二氧化碳氣氛下進行,用以增加二氧化碳使用達再利用之效益。在微波裂解實驗中,主要以木炭被用作微波吸收劑以幫助裂解反應。實驗結果發現,裂解產物之產率受加熱方式影響甚鉅。在傳統電熱加熱中,主要產物為生質油,其產率在51-54 wt%,然而生物炭則是微波加熱條件下之主要產物,其產率為61-84 wt%。在微波裂解實驗中,以兩種不同的吸收劑混合比為0.1和0.3進行比較。結果發現,吸收劑混合比從0.3降至0.1時,固體產率降低,而氣體和液體產率增加。主要是因為於在較低混合比下,反應器供於蔗渣熱裂解的能量較多。另外,在微波裂解下亦有氫氣生成,濃度為2-12 vol%,主要是微波輻射環境中比傳統加熱更容易產生蒸汽及生質炭之二次裂解反應。在第二個子項目中,主要進行了油棕纖維(oil palm fiber,OPF)和油棕纖維造粒(oil palm fiber pellet,OPFP)在氮氣和二氧化碳環境中之裂解反應,用以評估生物質形貌和攜帶氣體對三相產物的影響。操作條件主要考慮了400,450和500 °C三種不同反應溫度,並進行30分鐘之裂解反應。結果發現,相較於OPF之熱裂解,OPFP裂解後產生較高的液態產率,並且使用CO2作為攜帶氣體之液態產率高於使用N2的反應之液態產率。整體而言,攜帶氣體及生物質形貌對於產出之生質油組成影響不大。所得固態生質炭之脫氧和脫氫現象明顯,並且後者比前者更為明顯。來自熱解的OPF和OPFP的較高熱值分別增強至39%和24%。在產出氣體分析中, CO2和CO濃度分佈表示最劇烈的裂解反應發生在7-9分鐘。CH4的生成較晚於CO和CO2生成,主要是由於破壞甲氧基合成CH4所需的能量更多。整體而言,OPFP可在CO2環境中進行裂解反應製造生質油,並且可節省設備空間並實現CO2再利用。
第二部分之研究在於探討生質油和柴油在各種操作條件下的乳化特性,使用了三種不同的商業乳化劑(即Span 80,Tween 80和Atlox 4914)和四種不同來自業界之木材廢棄物快速熱解生物油。當單獨使用三種乳化劑時,乳化劑的效能順序為Atlox 4914 > Span 80 > Tween 80。藉由混合Span 80和Tween 80或Span80可獲得特定HLB(hydrophilic-lipophilic balance)值之雙元乳化劑。研究結果發現,生質油和柴油進行乳化的之最佳HLB值隨著O / C或H / C原子比,含水量或生質油的高位發熱值(higher heating value,HHV)的增加而線性增加。藉由最佳HLB值和生質油HHV的線性關係,可以尋得最適合乳化之HLB值,並可應用於生質油和柴油之間的乳化反應以得到高穩定性之生質乳化燃料。另外,本研究亦藉由傅立葉轉換紅外光譜儀(Fourier transform infrared spectroscopy,FTIR)分析乳化劑,生物油和柴油中的官能基以瞭解生質乳化燃料之分層現象。結果發現,在乳化燃料之分層現象不明顯之條件下,FTIR可做為快速且有效的方法來檢測乳化燃料的穩定性和均勻性。
在第三部分研究中,旨在探討不同生質油含量和生質油與乳化劑重量比(即B / E比)下,生質油與柴油乳化燃料在氧化反應時之交互作用,用以作為裂解質油應用之研究基礎。此部分研究所用的生質油主要來自橡膠木快速裂解產出之生質油,並以商業用Atlox 4914作為作乳化中的乳化劑。實驗主要利用熱重分析儀進行反應與分析。研究結果發現,乳化燃料在氧化反應過程中苦觀察到顯著之協合效應(synergistic effect),其中相互作用可以分成拮抗區(antagonistic zone)(≤210 °C)和增效區(synergistic zone)(≥210 °C)。反應過程中之最大交互作用發生於約380 °C,並且反應在增效區可增強乳化燃料的氧化效果。本研究亦引入無因次參數,增效因子(synergistic index,SI),將乳化燃料在氧化反應中之交互作用程度進行量化。
英文摘要 The sustainability of fuel resources and environment is an important issue that is of considerable concern in the world currently. The development of biofuels is regarded as an effective countermeasure to reduce fossil fuel consumption and CO2 emissions. Biomass pyrolysis is widely conducted to produce bio-oil, which has regarded as a potential energy carrier to replace conventional fossil fuels. The present works in this thesis are based on the biomass pyrolysis route with pathways toward fuels, including bio-oil production, upgrading, and fuel application from the upgraded bio-oil. For that, the present research is divided into three parts: (1) characterization of biomass pyrolysis; (2) emulsification of bio-oil/ diesel; and (3) oxidative reaction of emulsified fuel.
The first part is divided into two subsections that examine the pyrolysis behavior of biomass under various conditions. In the first subsection, the effects of heating modes on sugarcane bagasse pyrolysis were evaluated, and the experiments were carried out in a CO2 atmosphere to increase utilization of an abundant CO2 stream. In the microwave pyrolysis experiments, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product is bio-oil and its yield is in the range of 51-54 wt%, whereas biochar is the major product in microwave-assisted heating and its yield ranges from 61 to 84 wt%. Two different absorber blending ratios of 0.1 and 0.3 are considered in the microwave pyrolysis. The solid yield decreases when the absorber blending ratio decreases from 0.3 to 0.1, while the gas and liquid yields increase. Hydrogen is produced under the microwave pyrolysis and its concentration is between 2 and 12 vol%. This is attributed to the secondary cracking of vapors and the secondary decomposition of biochar in an environment with microwave irradiation is easier than those with conventional heating. In the second subsection, the pyrolyses of oil palm fiber (OPF) and oil palm fiber pellet (OPFP) in N2 and CO2 were performed to evaluate the impacts of biomass pattern and carrier gas on the three-phase products. Three different reaction temperatures of 400, 450, and 500 °C along with 30 min pyrolysis are considered. The pyrolysis experiments were carried out in a fixed-bed reactor by slow pyrolysis. The results indicate that OPFP pyrolysis gives a higher liquid yield when compared to OPF pyrolysis, and the liquid yield using CO2 as a carrier gas is higher than that using N2. The influences of carrier gas and biomass pattern on the components in bio-oils are not profound. The higher heating values of OPF and OPFP from pyrolysis are intensified up to 39 and 24 %, respectively. The CO2 and CO concentration distributions suggest that the most drastic pyrolysis reaction develops at 7-9 min. On account of more energy required for breaking methoxyl groups, CH4 formation is later than CO and CO2 formations. In summary, OPFP pyrolyzed in a CO2 environment is a feasible operation for producing bio-oils, thereby saving facility space and achieving CO2 utilization.
The second part of study is focus on emulsification characteristics of bio-oils and diesel at various operating conditions are analyzed. Three different commercial emulsifiers (i.e., Span 80, Tween 80, and Atlox 4914) and four bio-oils obtained by fast pyrolysis of wood wastes from industry are studied. When the three emulsifiers are individually employed, the performance of the emulsifiers is characterized by the order of Atlox 4914 > Span 80 > Tween 80. An emulsifier with a targeted HLB value of an emulsifier can be obtained by blending Span 80 and Tween 80 or Span 80 and Atlox 4914. The optimum HLB for the emulsification of bio-oils and diesel linearly increases with increasing the atomic O/C or H/C ratio, water content, or decreasing higher heating value (HHV) of bio-oil. The correlation of the optimum HLB and HHV can provide the best resulting mix, which can be employed for practical emulsification operation between bio-oils and diesel. The functional groups in the emulsifiers, bio-oils, and diesel are analyzed by Fourier transform infrared spectroscopy (FTIR) to characterize the emulsion.
In the third part of study, the reaction interaction during oxidation of a number of bio-oil/diesel emulsified fuels at various bio-oil contents and bio-oil-to-emulsifier weight ratios (i.e. B/E ratios) are examined to provide a basis for the applications of pyrolysis bio-oil. The bio-oil used in this part of study is obtained by the fast pyrolysis of rubber wood from industry. The commercial Atlox 4914 is used as the surfactant in the emulsification, while a thermogravimetric analyzer is employed in the analysis. A significant synergistic effect is observed during the oxidation of the emulsified fuels where the interaction can be partitioned into an antagonistic zone (≤ 210 °C) and a synergistic zone (≥ 210 °C). The maximum interaction occurs at about 380 °C, and the synergistic zone enhances the oxidation of the fuels. A dimensionless parameter termed the synergistic index (SI) is introduced to measure the interaction degree.
論文目次 摘要 I
第一章 前言 IV
第二章 文獻回顧 V
第三章 研究方法 VI
第四章 結果與討論 VII
第五章 結論與建議 VIII
Abstract X
致謝 XIII
Content XIV
List of Tables XVII
List of Figures XIX
Nomenclature XXIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
1.3 Overview 7
Chapter 2 Literature review 8
2.1 Biomass pyrolysis 8
2.1.1 Slow pyrolysis 10
2.1.2 Fast pyrolysis 11
2.1.3 Catalytic pyrolysis 13
2.1.4 Microwave pyrolysis 14
2.2 Biomass pellet 17
2.3 Bio-oil emulsification 21
2.4 Combustion of bio-oil / bio-oil emulsions 26
Chapter 3 Methodology 30
3.1 Biomass preparation 32
3.1.1 Sugarcane bagasse 32
3.1.2. Oil palm fibers and oil palm fiber pellets 32
3.2 Pyrolysis reaction system and experimental procedure 32
3.3 Emulsification procedures 35
3.3.1 Emulsification test 35
3.3.2 Optimum HLB 35
3.4 Analyses 37
3.4.1 Proximate analysis 37
3.4.2 Elemental analysis 37
3.4.3 Fiber analysis 37
3.4.4 FTIR analysis 38
3.4.5 Thermogravimetric analysis 38
3.4.6 Bio-oil analysis 39
Chapter 4 Results and Discussion 40
4.1 Characteristics of biomass pyrolysis under various conditions 40
4.1a Effects of heating mode on biomass pyrolysis 40
4.1a.1 Thermogravimetric analyses of sugarcane bagasse 40
4.1a.2 Pyrolysis under conventional heating 42
4.1a.3 Pyrolysis under microwave-assisted heating 46
4.1a.4 Effect of heating mode 51
4.1b Pyrolysis characteristics of oil palm fiber and its pellets 55
4.1b.1 Thermogravimetric analyses of OPF and OPFP 55
4.1b.2 Product yields of pyrolysis 58
4.1b.3 Characteristics of bio-oils 60
4.1b.4 Characteristics of biochar 64
4.1b.5 Gas formation 68
4.2 Emulsification of pyrolytic bio-oil and diesel 71
4.2.1 Bio-oils and emulsifiers 71
4.2.2 FTIR spectra of emulsifiers 74
4.2.3 Emulsification characteristics 77
4.2.4 Correlations of optimum HLB for emulsification 80
4.2.5 FTIR analysis 86
4.3 Reaction interaction of pyrolysis bio-oil/diesel emulsions 93
4.3.1 Materials and preparation of emulsified fuel 93
4.3.2 Properties of diesel, bio-oil, and emulsifier 96
4.3.3 Oxidative reaction characteristics of emulsified fuels 102
4.3.4 Interaction of diesel, bio-oil, and emulsifier 106
4.3.5 Synergistic index 113
4.3.6 Burnout temperature and fuel reactivity 113
Chapter 5 Conclusions and suggestions 118
5.1 Conclusions 118
5.2 Suggestions 121
References 122
List of publications 136
參考文獻 Abdullah, N., Gerhauser, H. 2008. Bio-oil derived from empty fruit bunches. Fuel, 87(12), 2606-2613.
Abiven, S., Schmidt, M.W.I., Lehmann, J. 2014. Biochar by design. Nature Geoscience, 7, 326.
Abnisa, F., Arami-Niya, A., Wan Daud, W.M.A., Sahu, J.N., Noor, I.M. 2013. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 76, 1073-1082.
Abnisa, F., Daud, W.M.A.W., Husin, W.N.W., Sahu, J.N. 2011. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy, 35(5), 1863-1872.
Abnisa, F., Wan Daud, W.M.A. 2014. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 87, 71-85.
Aboulkas, A., Hammani, H., El Achaby, M., Bilal, E., Barakat, A. 2017. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Bioresource technology, 243, 400-408.
Ahmad, K., Ho, C.C., Fong, W.K., Toji, D. 1996. Properties of Palm Oil-in-Water Emulsions Stabilized by Nonionic Emulsifiers. Journal of Colloid and Interface Science, 181(2), 595-604.
Akhtar, J., Saidina Amin, N. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101-5109.
Alcala, A., Bridgwater, A.V. 2013. Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel, 109, 417-426.
Assanvo, E.F., Gogoi, P., Dolui, S.K., Baruah, S.D. 2015. Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Industrial Crops and Products, 65, 293-302.
Atreya, A., Olszewski, P., Chen, Y., Baum, H.R. 2017. The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands. International Journal of Heat and Mass Transfer, 107, 319-328.
Aysu, T., Abd Rahman, N.A., Sanna, A. 2016. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production. Energy, 103, 205-214.
Babich, I.V., van der Hulst, M., Lefferts, L., Moulijn, J.A., O’Connor, P., Seshan, K. 2011. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199-3207.
Benavente, V., Fullana, A. 2015. Torrefaction of olive mill waste. Biomass and Bioenergy, 73, 186-194.
Biswas, B., Singh, R., Kumar, J., Khan, A.A., Krishna, B.B., Bhaskar, T. 2016. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresource technology, 213, 319-326.
Biswas, B., Singh, R., Kumar, J., Singh, R., Gupta, P., Krishna, B.B., Bhaskar, T. 2018. Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil. Renewable Energy, 129, 686-694.
Bora, M.M., Gogoi, P., Deka, D.C., Kakati, D.K. 2014. Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Industrial Crops and Products, 52, 721-728.
Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94.
Bu, Q., Lei, H., Wang, L., Wei, Y., Zhu, L., Liu, Y., Liang, J., Tang, J. 2013. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresource Technology, 142, 546-552.
Buffi, M., Cappelletti, A., Rizzo, A.M., Martelli, F., Chiaramonti, D. 2018. Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy, 115, 174-185.
Butstraen, C., Salaün, F., Devaux, E. 2015. Sol–gel microencapsulation of oil phase with Pickering and nonionic surfactant based emulsions. Powder Technology, 284, 237-244.
Cai, J., He, Y., Yu, X., Banks, S.W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A.V. 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 76, 309-322.
Cai, W., Liu, R. 2016. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel, 182, 677-686.
Campanella, A., Harold, M.P. 2012. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass and Bioenergy, 46, 218-232.
Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W. 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry, 16(2), 384-406.
Carrier, M., Hugo, T., Gorgens, J., Knoetze, H. 2011. Comparison of slow and vacuum pyrolysis of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis, 90(1), 18-26.
Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J. 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports, 3, 1732.
Chandrasekaran, S.R., Hopke, P.K. 2012. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. Bioresource Technology, 125, 52-58.
Chang, Y.-M., Tsai, W.-T., Li, M.-H. 2015. Chemical characterization of char derived from slow pyrolysis of microalgal residue. Journal of Analytical and Applied Pyrolysis, 111, 88-93.
Channiwala, S.A., Parikh, P.P. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
Chen, D., Zhou, J., Zhang, Q., Zhu, X. 2014. Evaluation methods and research progresses in bio-oil storage stability. Renewable and Sustainable Energy Reviews, 40, 69-79.
Chen, M.-q., Wang, J., Zhang, M.-x., Chen, M.-g., Zhu, X.-f., Min, F.-f., Tan, Z.-c. 2008. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82(1), 145-150.
Chen, W.-H., Lin, B.-J. 2016. Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres. Energy, 94, 569-578.
Chen, W.-H., Lin, B.-J. 2013. Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide. Applied Energy, 101, 551-559.
Chen, W.-H., Lin, B.-J., Huang, M.-Y., Chang, J.-S. 2015a. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology, 184, 314-327.
Chen, W.-H., Liu, S.-H., Juang, T.-T., Tsai, C.-M., Zhuang, Y.-Q. 2015b. Characterization of solid and liquid products from bamboo torrefaction. Applied Energy, 160, 829-835.
Chen, W.-H., Peng, J., Bi, X.T. 2015c. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866.
Chen, W.-H., Tu, Y.-J., Sheen, H.-K. 2010. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research, 34(3), 265-274.
Chen, W.-H., Ye, S.-C., Sheen, H.-K. 2012. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource Technology, 118, 195-203.
Chen, W.-H., Zhuang, Y.-Q., Liu, S.-H., Juang, T.-T., Tsai, C.-M. 2016. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresource Technology, 199, 367-374.
Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A.V., Grimm, H.P., Soldaini, I., Webster, A., Baglioni, P. 2003a. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1 : emulsion production. Biomass and Bioenergy, 25(1), 85-99.
Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A.V., Grimm, H.P., Soldaini, I., Webster, A., Baglioni, P. 2003b. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 2: tests in diesel engines. Biomass and Bioenergy, 25(1), 101-111.
Ciuta, S., Patuzzi, F., Baratieri, M., Castaldi, M.J. 2014. Biomass energy behavior study during pyrolysis process by intraparticle gas sampling. Journal of Analytical and Applied Pyrolysis, 108, 316-322.
Dabros, T.M.H., Stummann, M.Z., Høj, M., Jensen, P.A., Grunwaldt, J.-D., Gabrielsen, J., Mortensen, P.M., Jensen, A.D. 2018. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268-309.
de Jong, W., Pirone, A., Wójtowicz, M.A. 2003. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel, 82(9), 1139-1147.
De Luna, M.D.G., Cruz, L.A.D., Chen, W.-H., Lin, B.-J., Hsieh, T.-H. 2017. Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies. Energy, 141, 1416-1428.
Demiral, İ., Ayan, E.A. 2011. Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102(4), 3946-3951.
Devi, T.R., Gayathri, S. 2010. FTIR and FT-Raman spectral analysis of paclitaxel drugs. International Journal of Pharmaceutical Sciences Review and Research, 2(2), 106-110.
Dhyani, V., Bhaskar, T. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.
Dogan, E., Inglesi-Lotz, R. 2017. Analyzing the effects of real income and biomass energy consumption on carbon dioxide (CO2) emissions: Empirical evidence from the panel of biomass-consuming countries. Energy, 138, 721-727.
Domínguez, A., Menéndez, J.A., Fernández, Y., Pis, J.J., Nabais, J.M.V., Carrott, P.J.M., Carrott, M.M.L.R. 2007. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79(1), 128-135.
Elia, J.A., Baliban, R.C., Floudas, C.A., Gurau, B., Weingarten, M.B., Klotz, S.D. 2013. Hardwood Biomass to Gasoline, Diesel, and Jet Fuel: 2. Supply Chain Optimization Framework for a Network of Thermochemical Refineries. Energy & Fuels, 27(8), 4325-4352.
Erlich, C., Björnbom, E., Bolado, D., Giner, M., Fransson, T.H. 2006. Pyrolysis and gasification of pellets from sugar cane bagasse and wood. Fuel, 85(10), 1535-1540.
Erlich, C., Öhman, M., Björnbom, E., Fransson, T.H. 2005. Thermochemical characteristics of sugar cane bagasse pellets. Fuel, 84(5), 569-575.
Feng, C., Gao, X., Wu, H. 2016. Particulate matter emission from bio-oil incomplete combustion under conditions relevant to stationary applications. Fuel, 171, 143-150.
Feng, C., Wu, H. 2018. Synergy on particulate matter emission during the combustion of bio-oil/biochar slurry (bioslurry). Fuel, 214, 546-553.
Fu, P., Bai, X., Yi, W., Li, Z., Li, Y., Wang, L. 2017. Assessment on performance, combustion and emission characteristics of diesel engine fuelled with corn stalk pyrolysis bio-oil/diesel emulsions with Ce0. 7Zr0. 3O2 nanoadditive. Fuel Processing Technology, 167, 474-483.
Galadima, A., Muraza, O. 2015. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Conversion and Management, 105, 338-354.
Gao, W., Zhang, M., Wu, H. 2017. Ignition temperatures of various bio-oil based fuel blends and slurry fuels. Fuel, 207, 240-243.
Gong, M., Yang, J., Zhang, J., Zhu, H., Tong, T. 2016. Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Construction and Building Materials, 105, 35-45.
Griffin, W.C. 1954. Calculation of HLB values of non-ionic surfactants. Journal of the Society of Cosmetic Chemists, 5, 249-256.
Guizani, C., Valin, S., Billaud, J., Peyrot, M., Salvador, S. 2017. Biomass fast pyrolysis in a drop tube reactor for bio oil production: Experiments and modeling. Fuel, 207, 71-84.
Guo, X., Wang, S., Wang, Q., Guo, Z., Luo, Z. 2011. Properties of Bio-oil from Fast Pyrolysis of Rice Husk. Chinese Journal of Chemical Engineering, 19(1), 116-121.
Guo, Z., Wang, S., Wang, X. 2014. Stability mechanism investigation of emulsion fuels from biomass pyrolysis oil and diesel. Energy, 66, 250-255.
Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S. 2013. Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renewable Energy, 60, 625-632.
Heo, H.S., Park, H.J., Dong, J.-I., Park, S.H., Kim, S., Suh, D.J., Suh, Y.-W., Kim, S.-S., Park, Y.-K. 2010. Fast pyrolysis of rice husk under different reaction conditions. Journal of Industrial and Engineering Chemistry, 16(1), 27-31.
Ho, S.-H., Zhang, C., Chen, W.-H., Shen, Y., Chang, J.-S. 2018. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresource Technology, 264, 7-16.
Hong, Y., Chen, W., Luo, X., Pang, C., Lester, E., Wu, T. 2017. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresource Technology, 237, 47-56.
Hou, S.-S., Huang, W.-C., Lin, T.-H. 2017. Co-Combustion of Fast Pyrolysis Bio-Oil Derived from Coffee Bean Residue and Diesel in an Oil-Fired Furnace. Applied Sciences, 7(10), 1085.
Hou, S.-S., Rizal, F.M., Lin, T.-H., Yang, T.-Y., Wan, H.-P. 2013. Microexplosion and ignition of droplets of fuel oil/bio-oil (derived from lauan wood) blends. Fuel, 113, 31-42.
Hsieh, C.-T., Lin, P., Lai, J. 2014. An emulsification method of bio-oils in diesel. China Steel Technical Report, 27, 78-82.
Huang, H.B., Aisyah, L., Ashman, P.J., Leung, Y.C., Kwong, C.W. 2013. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers. Bioresource Technology, 140, 385-391.
Hwang, H., Oh, S., Cho, T.-S., Choi, I.-G., Choi, J.W. 2013. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Bioresource technology, 150, 359-366.
Ibrahim, N., Jensen, P., Dam-Johansen, K., Hamid, M., Kasmani, R., Ali, R. 2013. Experimental Investigation of Combustion Behavior of Flash Pyrolysis Oil. in: Developments in Sustainable Chemical and Bioprocess Technology, Springer, pp. 181-187.
Iisa, K., Robichaud, D.J., Watson, M.J., ten Dam, J., Dutta, A., Mukarakate, C., Kim, S., Nimlos, M.R., Baldwin, R.M. 2018. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading. Green Chemistry, 20(3), 567-582.
Ikladious, N.E., Asaad, J.N., Emira, H.S., Mansour, S.H. 2017. Alkyd resins based on hyperbranched polyesters and PET waste for coating applications. Progress in Organic Coatings, 102, 217-224.
Ikura, M., Stanciulescu, M., Hogan, E. 2003. Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass and Bioenergy, 24(3), 221-232.
Jena, U., Das, K.C., Kastner, J.R. 2011. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221-6229.
Jiang, H., Zhang, M., Chen, J., Li, S., Shao, Y., Yang, J., Li, J. 2017. Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate. Fuel, 200, 218-224.
Jiang, X., Ellis, N. 2010. Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production. Energy & Fuels, 24(2), 1358-1364.
Kalogiannis, K.G., Stefanidis, S.D., Karakoulia, S.A., Triantafyllidis, K.S., Yiannoulakis, H., Michailof, C., Lappas, A.A. 2018. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation. Applied Catalysis B: Environmental, 238, 346-357.
Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R. 2014. Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. Journal of Analytical and Applied Pyrolysis, 105, 55-74.
Kim, I., Dwiatmoko, A.A., Choi, J.-W., Suh, D.J., Jae, J., Ha, J.-M., Kim, J.-K. 2017. Upgrading of sawdust pyrolysis oil to hydrocarbon fuels using tungstate-zirconia-supported Ru catalysts with less formation of cokes. Journal of Industrial and Engineering Chemistry, 56, 74-81.
Kim, J.-S. 2015. Production, separation and applications of phenolic-rich bio-oil – A review. Bioresource Technology, 178, 90-98.
Knowles, A. 2012. Chemistry and technology of agrochemical formulations. Springer Science & Business Media.
Krutof, A., Hawboldt, K. 2016. Blends of pyrolysis oil, petroleum, and other bio-based fuels: a review. Renewable and Sustainable energy reviews, 59, 406-419.
Kuan, W.-H., Huang, Y.-F., Chang, C.-C., Lo, S.-L. 2013. Catalytic pyrolysis of sugarcane bagasse by using microwave heating. Bioresource Technology, 146, 324-329.
Lam, S.S., Wan Mahari, W.A., Ma, N.L., Azwar, E., Kwon, E.E., Peng, W., Chong, C.T., Liu, Z., Park, Y.-K. 2019. Microwave pyrolysis valorization of used baby diaper. Chemosphere, 230, 294-302.
Lee, J.W., Hawkins, B., Day, D.M., Reicosky, D.C. 2010. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy & Environmental Science, 3(11), 1695-1705.
Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.-K., Jung, J., Hyun, S. 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresource technology, 148, 196-201.
Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D. 2014. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Applied Energy, 116, 178-190.
Leng, L., Li, H., Yuan, X., Zhou, W., Huang, H. 2018. Bio-oil upgrading by emulsification/microemulsification: A review. Energy, 161, 214-232.
Liang, Y. 2013. Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860-868.
Lievens, C., Mourant, D., He, M., Gunawan, R., Li, X., Li, C.-Z. 2011. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel, 90(11), 3417-3423.
Lin, B.-J., Chen, W.-H., Budzianowski, W.M., Hsieh, C.-T., Lin, P.-H. 2016. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy, 178, 746-757.
Lin, B.-J., Colin, B., Chen, W.-H., Pétrissans, A., Rousset, P., Pétrissans, M. 2018. Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. Journal of Analytical and Applied Pyrolysis, 130, 8-18.
Liu, Z., Jiang, Z., Cai, Z., Fei, B., YanYu, Liu, X.e. 2013a. Effects of carbonization conditions on properties of bamboo pellets. Renewable Energy, 51, 1-6.
Liu, Z., Liu, X.e., Fei, B., Jiang, Z., Cai, Z., Yu, Y. 2013b. The properties of pellets from mixing bamboo and rice straw. Renewable Energy, 55, 1-5.
Lu, J.-J., Chen, W.-H. 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy, 160, 49-57.
Lu, K.-M., Lee, W.-J., Chen, W.-H., Lin, T.-C. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy, 105, 57-65.
Lu, Q., Zhang, Z.-B., Liao, H.-T., Yang, X.-C., Dong, C.-Q. 2012. Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil. Energies, 5(3), 741.
Lu, X., Withers, M.R., Seifkar, N., Field, R.P., Barrett, S.R.H., Herzog, H.J. 2015. Biomass logistics analysis for large scale biofuel production: Case study of loblolly pine and switchgrass. Bioresource Technology, 183, 1-9.
Luque, R., Menéndez, J.A., Arenillas, A., Cot, J. 2012. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy & Environmental Science, 5(2), 5481-5488.
Maliutina, K., Tahmasebi, A., Yu, J. 2018. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds. Bioresource Technology, 256, 160-169.
Martin, J.A., Mullen, C.A., Boateng, A.A. 2014. Maximizing the Stability of Pyrolysis Oil/Diesel Fuel Emulsions. Energy & Fuels, 28(9), 5918-5929.
Mettler, M.S., Mushrif, S.H., Paulsen, A.D., Javadekar, A.D., Vlachos, D.G., Dauenhauer, P.J. 2012. Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates. Energy & Environmental Science, 5(1), 5414-5424.
Michael, E.A. 2002. Pharmaceutics: The science of dosage form design. London, UK: Churchill Livingstone, 197-210.
Mirkouei, A., Haapala, K.R., Sessions, J., Murthy, G.S. 2017. A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renewable and Sustainable Energy Reviews, 67, 15-35.
Mišljenović, N., Bach, Q.-V., Tran, K.-Q., Salas-Bringas, C., Skreiberg, Ø. 2014. Torrefaction Influence on Pelletability and Pellet Quality of Norwegian Forest Residues. Energy & Fuels, 28(4), 2554-2561.
Mistry, B. 2009. Handbook of Spectroscopic Data: Chemistry - UV,IR,PMR,CNMR and Mass Spectroscopy. Oxford Book Company Jaipur, India.
Motasemi, F., Afzal, M.T. 2013. A review on the microwave-assisted pyrolysis technique. Renewable and sustainable energy reviews, 28, 317-330.
Murphy, F., McDonnell, K. 2017. Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104, 80-88.
Mwangi, J.K., Lee, W.-J., Chang, Y.-C., Chen, C.-Y., Wang, L.-C. 2015. An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Applied Energy, 159, 214-236.
Mythili, R., Venkatachalam, P., Subramanian, P., Uma, D. 2013. Characterization of bioresidues for biooil production through pyrolysis. Bioresource Technology, 138, 71-78.
Namasivayam, A.M., Korakianitis, T., Crookes, R.J., Bob-Manuel, K.D.H., Olsen, J. 2010. Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines. Applied Energy, 87(3), 769-778.
Nazari, L., Yuan, Z., Souzanchi, S., Ray, M.B., Xu, C. 2015. Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils. Fuel, 162, 74-83.
Nguyen, D., Honnery, D. 2008. Combustion of bio-oil ethanol blends at elevated pressure. Fuel, 87(2), 232-243.
Noor El-Din, M.R., El-Hamouly, S.H., Mohamed, H.M., Mishrif, M.R., Ragab, A.M. 2013. Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties. Egyptian Journal of Petroleum, 22(4), 517-530.
Ogunkoya, D., Li, S., Rojas, O.J., Fang, T. 2015. Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin. Applied Energy, 154, 851-861.
Ohlemüller, P., Ströhle, J., Epple, B. 2017. Chemical looping combustion of hard coal and torrefied biomass in a 1MWth pilot plant. International Journal of Greenhouse Gas Control, 65, 149-159.
Ortiz, D.S., Curtright, A.E., Samaras, C., Litovitz, A., Burger, N. 2011. Near-Term Opportunities for Integrating Biomass into the US Electricity Supply: Technical Considerations. Rand Corporation.
Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., Tong, D., Qing, R., Fan, Y. 2010. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593-4599.
Park, S., Woo, S., Kim, H., Lee, K. 2016. The characteristic of spray using diesel water emulsified fuel in a diesel engine. Applied Energy, 176, 209-220.
Părpăriţă, E., Brebu, M., Azhar Uddin, M., Yanik, J., Vasile, C. 2014. Pyrolysis behaviors of various biomasses. Polymer Degradation and Stability, 100, 1-9.
Perazzo, A., Preziosi, V., Guido, S. 2015. Phase inversion emulsification: Current understanding and applications. Advances in Colloid and Interface Science, 222, 581-599.
Piloni, R.V., Brunetti, V., Urcelay, R.C., Daga, I.C., Moyano, E.L. 2017. Chemical properties of biosilica and bio-oil derived from fast pyrolysis of Melosira varians. Journal of Analytical and Applied Pyrolysis, 127, 402-410.
Poletto, M. 2016. Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas. Ciencia y tecnología, 18(3), 435-442.
Popp, J., Lakner, Z., Harangi-Rakos, M., Fari, M. 2014. The effect of bioenergy expansion: food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559-578.
Prakash, R., Singh, R., Murugan, S. 2015. Experimental studies on combustion, performance and emission characteristics of diesel engine using different biodiesel bio oil emulsions. Journal of the Energy Institute, 88(1), 64-75.
Prakash, R., Singh, R.K., Murugan, S. 2013. Experimental investigation on a diesel engine fueled with bio-oil derived from waste wood–biodiesel emulsions. Energy, 55, 610-618.
Rahman, M.M., Liu, R., Cai, J. 2018. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180, 32-46.
Ren, S., Lei, H., Wang, L., Bu, Q., Chen, S., Wu, J., Julson, J., Ruan, R. 2013. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology, 135, 659-664.
Ren, X., Meng, J., Moore, A.M., Chang, J., Gou, J., Park, S. 2014. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils. Bioresource technology, 152, 267-274.
Reza, M.T., Lynam, J.G., Vasquez, V.R., Coronella, C.J. 2012. Pelletization of biochar from hydrothermally carbonized wood. Environmental Progress & Sustainable Energy, 31(2), 225-234.
Salager, J.-L. 2002. Surfactants types and uses. Types and uses. FIRP Booklet no. 300A.
Salema, A.A., Ani, F.N. 2012a. Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162-172.
Salema, A.A., Ani, F.N. 2011. Microwave induced pyrolysis of oil palm biomass. Bioresource Technology, 102(3), 3388-3395.
Salema, A.A., Ani, F.N. 2012b. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation. Bioresource Technology, 125, 102-107.
Schmidts, T., Dobler, D., Guldan, A.C., Paulus, N., Runkel, F. 2010. Multiple W/O/W emulsions—Using the required HLB for emulsifier evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1), 48-54.
Shen, D., Jin, W., Hu, J., Xiao, R., Luo, K. 2015. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Reviews, 51, 761-774.
Shihadeh, A., Hochgreb, S. 2000. Diesel engine combustion of biomass pyrolysis oils. Energy & Fuels, 14(2), 260-274.
Srivastava, U., Kawatra, S.K., Eisele, T.C. 2013. Production of pig iron by utilizing biomass as a reducing agent. International Journal of Mineral Processing, 119, 51-57.
Stefanidis, S.D., Kalogiannis, K.G., Iliopoulou, E.F., Michailof, C.M., Pilavachi, P.A., Lappas, A.A. 2014. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143-150.
Suali, E., Sarbatly, R. 2012. Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342.
Sultana, A., Kumar, A., Harfield, D. 2010. Development of agri-pellet production cost and optimum size. Bioresource Technology, 101(14), 5609-5621.
Valix, M., Katyal, S., Cheung, W. 2017. Combustion of thermochemically torrefied sugar cane bagasse. Bioresource technology, 223, 202-209.
Vandyck, T., Keramidas, K., Saveyn, B., Kitous, A., Vrontisi, Z. 2016. A global stocktake of the Paris pledges: Implications for energy systems and economy. Global Environmental Change, 41, 46-63.
Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., Atong, D. 2015. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy, 79, 28-37.
Wang, J.-X., Cao, J.-P., Zhao, X.-Y., Liu, T.-L., Wei, F., Fan, X., Zhao, Y.-P., Wei, X.-Y. 2017. Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. Journal of Analytical and Applied Pyrolysis, 125, 279-288.
Wang, L., Lei, H., Lee, J., Chen, S., Tang, J., Ahring, B. 2013. Aromatic hydrocarbons production from packed-bed catalysis coupled with microwave pyrolysis of Douglas fir sawdust pellets. RSC Advances, 3(34), 14609-14615.
Wang, L., Xiu, S., Shahbazi, A. 2016a. Combustion characteristics of bio-oil from swine manure/crude glycerol co-liquefaction by thermogravimetric analysis technology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(15), 2250-2257.
Wang, N., Tahmasebi, A., Yu, J., Xu, J., Huang, F., Mamaeva, A. 2015. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresource Technology, 190, 89-96.
Wang, S., Dai, G., Ru, B., Zhao, Y., Wang, X., Zhou, J., Luo, Z., Cen, K. 2016b. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresource technology, 218, 1106-1114.
Wang, W.-C., Jan, J.-J. 2018. From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass. Energy, 155, 139-151.
Wang, X.-l., Yuan, X.-z., Huang, H.-j., Leng, L.-j., Li, H., Peng, X., Wang, H., Liu, Y., Zeng, G.-m. 2014. Study on the solubilization capacity of bio-oil in diesel by microemulsion technology with Span80 as surfactant. Fuel Processing Technology, 118, 141-147.
Wornat, M.J., Porter, B.G., Yang, N.Y. 1994. Single droplet combustion of biomass pyrolysis oils. Energy & Fuels, 8(5), 1131-1142.
Wu, M., Yang, S. 2016. Combustion characteristics of multi-component cedar bio-oil/kerosene droplet. Energy, 113, 788-795.
Xianwen, D., Chuangzhi, W., Haibin, L., Yong, C. 2000. The Fast Pyrolysis of Biomass in CFB Reactor. Energy & Fuels, 14(3), 552-557.
Xie, Q., Addy, M., Liu, S., Zhang, B., Cheng, Y., Wan, Y., Li, Y., Liu, Y., Lin, X., Chen, P., Ruan, R. 2015. Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel, 160, 577-582.
Xin, S., Yang, H., Chen, Y., Wang, X., Chen, H. 2013. Assessment of pyrolysis polygeneration of biomass based on major components: Product characterization and elucidation of degradation pathways. Fuel, 113, 266-273.
Xiu, S., Shahbazi, A. 2012. Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406-4414.
Xu, Z.-X., Liu, P., Xu, G.-S., Liu, Q., He, Z.-X., Wang, Q. 2017. Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil. Energy, 133, 666-675.
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781-1788.
Yang, S., Hsu, T., Wu, C., Chen, K., Hsu, Y., Li, Y. 2014a. Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines. Energy, 66, 172-180.
Yang, S., Wu, M., Hsu, T. 2017. Spray combustion characteristics of kerosene/bio-oil part I: Experimental study. Energy, 119, 26-36.
Yang, S.I., Hsu, T.C., Wu, C.Y., Chen, K.H., Hsu, Y.L., Li, Y.H. 2014b. Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines. Energy, 66, 172-180.
Yang, S.I., Wu, M.S., Wu, C.Y. 2014c. Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products. Energy, 66, 162-171.
Yang, Z., Kumar, A., Huhnke, R.L. 2015. Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews, 50, 859-870.
Yin, C. 2012. Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresource Technology, 120, 273-284.
Yin, R., Liu, R., Mei, Y., Fei, W., Sun, X. 2013. Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel, 112, 96-104.
Yuan, X., Ding, X., Leng, L., Li, H., Shao, J., Qian, Y., Huang, H., Chen, X., Zeng, G. 2018. Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions. Energy, 154, 110-118.
Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z. 2011. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresource Technology, 102(5), 4258-4264.
Zhang, L., Liu, R., Yin, R., Mei, Y. 2013. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renewable and Sustainable Energy Reviews, 24, 66-72.
Zhang, Q., Chang, J., Wang, T., Xu, Y. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48(1), 87-92.
Zhang, X. 2016. Essential scientific mapping of the value chain of thermochemically converted second-generation bio-fuels. Green Chemistry, 18(19), 5086-5117.
Zhang, Z.-b., Lu, Q., Ye, X.-n., Li, W.-t., Hu, B., Dong, C.-q. 2015. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. Energy Conversion and Management, 106, 1309-1317.
Zhao, C., Jiang, E., Chen, A. 2017. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute, 90(6), 902-913.
Zhao, X., Wang, M., Liu, H., Li, L., Ma, C., Song, Z. 2012. A microwave reactor for characterization of pyrolyzed biomass. Bioresource Technology, 104, 673-678.
Zhao, X., Wang, M., Liu, H., Zhao, C., Ma, C., Song, Z. 2013. Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw. Journal of Analytical and Applied Pyrolysis, 100, 49-55.
Zhao, X., Wang, W., Liu, H., Ma, C., Song, Z. 2014. Microwave pyrolysis of wheat straw: Product distribution and generation mechanism. Bioresource Technology, 158, 278-285.
Zheng, J.-L., Kong, Y.-P. 2010. Spray combustion properties of fast pyrolysis bio-oil produced from rice husk. Energy Conversion and Management, 51(1), 182-188.
Zhou, C., Zhang, Q., Arnold, L., Yang, W., Blasiak, W. 2013. A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Applied Energy, 107, 173-182.
Zhou, H., Wu, C., Meng, A., Zhang, Y., Williams, P.T. 2014. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 110, 264-269.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw