進階搜尋


下載電子全文  
系統識別號 U0026-2006201713282300
論文名稱(中文) 鈦/砷化鎵薄膜系統之奈米壓痕行為及退火微觀結構變化之研究
論文名稱(英文) Nanoindentation Behaviour and Annealed Microstructural Evolution of Ti/GaAs Thin Film
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 羅崇嘉
研究生(英文) Chung-Chia Lo
學號 N16041480
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-李偉賢
口試委員-王俊志
口試委員-黃永茂
中文關鍵字 砷化鎵  退火  奈米壓痕  差排 
英文關鍵字 Nanoindentation  GaAs  Microstructural evolution  Annealing  Thin films 
學科別分類
中文摘要 本研究主要討論鈦/砷化鎵薄膜系統奈米壓痕行為以及退火後薄膜界面化合物形成對機械性質變化。本實驗首先利用電子束蒸鍍法在砷化鎵晶圓上製作一100 nm厚度之鈦薄膜,選取並切割實驗試片後,以奈米壓痕系統對未退火試片進行50 nm及200 nm深度之奈米壓痕試驗,以瞭解壓痕深度對薄膜系統機械性質之影響。另外一組試片經過退火處理,條件為加熱至490℃,並持溫36分鐘,再對試片進行50 nm、120 nm以及200 nm深度之奈米壓痕試驗,藉以比較未退火及退火後,化合物形成對微觀機械性質之改變及影響。
巨觀機械性質量測顯示,硬度受壓痕尺寸效應與表面粗糙度及基材效應所影響,薄膜硬度值約為7.84GPa,楊氏模數約為118.90GPa。負載-深度曲線顯示在壓痕深度200nm時,曲線有pop-in的現象發生,其原因為基材內部產生差排滑移的現象,由穿透式電子顯微鏡可觀測到此結果。退火後微觀結構可發現界面形成兩種化合物,由其晶格間距可證明為Ti2Ga3以及TiAs。穿透式電子顯微鏡觀測結果顯示,在壓痕深度200nm亦有差排產生,但負載-深度曲線並無pop-in現象發生,可證明其差排成因為基材內部雜質或空洞所致,基材並無明顯差排滑移現象產生。
英文摘要 The mechanical properties of Ti/GaAs thin films in room temperatures and annealed indented to different depth are investigated by using a nanoindentation technique. The specimens are annealed at the temperature 490℃ for 36 minutes. After annealed, Ti/GaAs thin films become to Ti2Ga3/TiAs/GaAs layer and the evidence can prove by transmission electron microscopy (TEM). In addition, the Ti2Ga3 layer in the annealed specimens were analysed using Raman scattering spectroscopy. The result show that the pop-in effect appeared at the load-depth curve in the nanoindented depth 200nm in RT. The load-depth curve continuous and smooth after annealed. The hardness and Young’s modulus of the Ti/GaAs thin films have the values of 8.9GPa and 124.01GPa at the indentation depth of 200nm. After annealed, the values rise to 10.44GPa and 124.3GPa. The formation of dislocation detected by TEM can be the reason of the pop-in effect found in the condition nanoindented depth 200nm at RT. The dislocation also detected in the annealed specimens although the load-depth curve have no pop-in effect. The dislocation is related to the density of native defects and the difference in doping.
論文目次 中文摘要 I
ABSTRACT II
致謝 IX
總目錄 X
圖目錄 XIII
符號說明 XVI
第一章 前言 1
第二章 理論與文獻回顧 3
2-1砷化鎵性質與應用理論介紹 3
2-1-1砷化鎵簡介與應用 3
2-1-2蕭特基二極體(Schottky Diode) 3
2-1-3砷化鎵的蕭特基接觸特性 4
2-2奈米壓痕理論 4
2-2-1奈米壓痕數學模型 4
2-2-2初始卸載勁度與接觸面積之量測 6
2-2-3奈米壓痕數學模型的修正 8
2-3影響薄膜量測之因素 9
2-3-1壓痕尺寸效應(Indentation size effect, ISE) 9
2-3-2表面粗糙效應(Surface roughness) 10
2-3-3擠出和沉陷效應(Pile-up & sink-in effect) 10
2-4奈米壓痕試驗之實驗校正 11
2-4-1靜電力校正 11
2-4-2探針面積函數校正 12
2-4-3五點定位校正 12
2-4-4熱漂移校正 12
第三章 實驗方法與步驟 16
3-1實驗流程 16
3-2實驗儀器與設備 17
3-2-1電子束蒸鍍機(E-beam Evaporator) 17
3-2-2電子束微影光罩製作系統(Electron beam lithography system, EBL) 18
3-2-3奈米三維量測儀及奈米薄膜材料試驗機(Nano indenterXP) 19
3-2-4退火處理設備(Thermal annealing) 19
3-2-5聚焦離子束系統(Focused ion beam, FIB) 20
3-2-6高解析穿透式電子顯微鏡(High resolution transmission electron microscope, HR-TEM) 20
3-2-7拉曼光譜儀(Raman Spectroscopy) 21
3-3試片製備 21
3-3-1蒸鍍材料與試片製備 22
3-3-2微影蝕刻製程 22
3-4實驗方法與步驟 23
3-4-1奈米壓痕試驗 23
3-4-2對試片進行退火處理 24
3-4-3微觀結構的觀察 24
第四章 實驗結果與討論 33
4-1薄膜機械性質討論 33
4-1-1壓痕深度與負載曲線分析 33
4-1-2壓痕深度與硬度曲線分析 34
4-1-3壓痕深度與楊氏模數曲線分析 35
4-1-3奈米壓痕數學模型的修正 35
4-2壓痕表面形貌討論 36
4-2-1壓痕深度50nm退火前後之壓痕表面形貌分析 36
4-2-2壓痕深度200nm退火前後之壓痕表面形貌分析 37
4-2-3壓痕深度120nm退火後之壓痕表面形貌分析 37
4-3壓痕剖面形貌討論 37
4-3-1壓痕深度50nm退火前後之壓痕剖面形貌分析 38
4-3-2壓痕深度200nm退火前後之壓痕剖面形貌分析 39
4-3-3壓痕深度120nm退火後之壓痕剖面形貌分析 40
4-4壓痕區拉曼光譜之討論 40
第五章 結論 65
參考文獻 66
參考文獻 [1] J. G. Swadener, E. P. Georgea, and G. M. Pharra, "The correlation of the indentation size effect measured with indenters of various shapes," Journal of the Mechanics and Physics of Solids, vol. 50, pp. 681-694, 2002.
[2] G. M. Pharr, "Measurement of mechanical properties by ultra-low load indentation," Materials Science and Engineering, vol. A253, pp. 151-159, 1998.
[3] S. Yugang, K. Seiyon, A. Ilesanmi, and R. J. A, "Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates," Applied Physics Letters, vol. 87, p. 083501, 2005.
[4] A. K. Sinha, T. E. Smith, M. H. Read, and J. M. Poate, "n-GaAs Schottky Diodes Metallized With Ti and Pt/Ti," Solid-State Electronics, vol. 19, pp. 489-492, 1976.
[5] B.K. Sehgal, R. Gulati, A.A. Naik, Seema Vinayak, D.S. Rawal, and H. S. Sharma, "(n)GaAs/Ti/Pt Schottky contacts and their effect on MESFET's dc parameters," Materials Science and Engineering, vol. B48, pp. 229-233, 1997.
[6] G. Donzelli and A. Paccagnwlla, "Degradation Mechanism of Ti/Au and Ti/Pd/Au Gate Metallizations in GaAs MESFET," Transactions on Electron Devices, vol. ED-34, pp. 957-960, 1987.
[7] A. Scavennec, M. Sokolich, and Y. Baeyens, "Semiconductor technologies for higher frequencies," Microwave Magazine, vol. 10, pp. 77-87, 2009.
[8] B. L and B. Roberto, "The scaling challenges of CMOS and the impact on high-density non-volatile memories," Microsystem Technologies, vol. 13, pp. 133-138, 2006.
[9] R. Ludeke and G. Landgren, "Electronic properties and chemistry of Ti/GaAs and Pd/GaAs interfaces," Physical Review B, vol. 33, pp. 5526-5535, 1986.
[10] S. Ashok and J. M. Borrego, "Electrical characteristics of GaAs MIS Schottky diodes," Solid-State Electronics, vol. 22, pp. 621-631, 1979.
[11] T. Nakamura, "Mars Rover power system for solar and laser beam Utilization," Concepts and Approaches for Mars Exploration, 2012.
[12] B. K. Sehgal, B. Bhattacharya, S. Vinayak, and R. Gulati, "Thermal reliability of n-GaAs Ti/Pt/Au Schottky contacts with thin Ti films-for reduced gate resistance," Thin Solid Films, vol. 330, 1998.
[13] V. Kozer and A. Grϋb, "A Novel Fabrication Process And Analytical Model For Pt Schottky Barrier Mixer Diodes," Solid-State Electronics, vol. 37, pp. 169-180, 1994.
[14] V. Kumar, "Reaction of sputtered Pt films on GaAs," J. Phys. Chem. Solids, vol. 36, pp. 535-541, 1975.
[15] C. Anthony and C. Fischer, "Nanoindentation," 2nd ed. Springer, N. Y., 2004.
[16] S. Timoshenko and J. N. Goodier, "Theory of Elasticity," 2nd ed. McGraw-Hill, N. Y., 1951.
[17] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of Materials Research, vol. 7 No.3, 1992.
[18] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[19] G. Huajian, C. Cheng-Hsin, and L. Jin, "Elastic contact versus indentation modeling of multi-layered materials," International Journal of Solids and Structures, vol. 29, pp. 2471-2492, 1992.
[20] M. Wittling, A. Bendavid, P. J. Martin, and M. V. Swain, "Influence of thickness and substrate on the hardness and deformation," Thin Solid Films, vol. 270, pp. 283-288, 1995.
[21] M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, "Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate," Surface and Coatings Technology, vol. 200, pp. 4185-4194, 2006.
[22] I. Manika and J. Maniks, "Size effects in micro- and nanoscale indentation," Acta Materialia, vol. 54, pp. 2049-2056, 2006.
[23] K. MIYAKE, S. FUJISAWA, and A. KORENAGA, "The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation," Japanese Journal of Applied Physics, vol. 43, 2004.
[24] B. Bokhonov and M. Korchagin, "In situ investigation of stage of the formation of eutectic alloys in Si–Au," Journal of Alloys and Compounds, vol. 312, pp. 238-250, 2000.
[25] Y.-L. Chuang, "Effect of annealing temperature on nanoindented microstructure of CuSi thin films," 2009.
[26] H. S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, and P. Grau, "Nanoindentation pop-in effect in semiconductors," Physica B: Condensed Matter, vol. 308–310, pp. 446-449, 12// 2001.
[27] G. Patriarche, E. Le Bourhis, D. Faurie, and P. O. Renault, "TEM study of the indentation behaviour of thin Au film on GaAs," Thin Solid Films, vol. 460, pp. 150-155, 7/22/ 2004.
[28] K. Durst, B. Backes, and M. Göken, "Indentation size effect in metallic materials: Correcting for the size of the plastic zone," Scripta Materialia, vol. 52, pp. 1093-1097, 2005.
[29] H. Chengchun, "A study of the Microstructure and Properties of TiTin Multilayers Prepared by unablanced Magnetron sputtering," 2003.
[30] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tourni , and J. P. Faurie, "Nanoindentation of Si, GaP, GaAs and ZnSe single crystals," Journal of Physics D Applied Physics, vol. 36, pp. L5-L9, 2003.
[31] K. K. Bum, "Interfacial reactions in the Ti/GaAs system," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6, p. 1473, 1988.
[32] K. Margaret, "Study of the structure and properties of the Ti/GaAs interface," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 5, p. 1511, 1987.
[33] O. Wada, S. Yanagisawa, and H. Takanashi, "Thermal reaction of Ti evaporated on GaAs," Applied Physics Letters, vol. 29, p. 263, 1976.
[34] A. A. Elmustafa and D. S. Stone, "Indentation size effect in polycrystalline F.C.C. metals," Acta Materialia, vol. 50, pp. 3641-3650, 2002.
[35] Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad, and W. O. Soboyejo, "Indentation size effects in the nano- and micro-hardness of fcc single crystal metals," Materials Science and Engineering: A, vol. 434, pp. 178-187, 2006.
[36] F. K. Mantel, G. R. Baran, and B. Lucas, "Nanoindentation studies of titanium single crystals," Biomaterials, vol. 20, pp. 1051-1055, 1999.
[37] C. Shaohua, L. Lei, and W. Tzuchiang, "Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations," Surface and Coatings Technology, vol. 191, pp. 25-32, 2005.
[38] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo, "Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness," Materials Science and Engineering: A, vol. 427, pp. 232-240, 2006.
[39] J. Chakraborty, K. Kumar, R. Ranjan, and S. G. Chowdhury, "Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films," Acta Materialia, vol. 59, pp. 2615-2623, 2011.
[40] H. E. Swanson, M. C. Morris, and E. H. Evans, "Titanium, Ti," Standard X-ray Diffraction Powder Patterns, vol. 3, p. 4, 1956.
[41] H. E. Swanson, M. C. Morris, and E. H. Evans, "Gallium Arsenide, GaAs " Standard X-ray Diffraction Powder Patterns, p. 33, 1964.
[42] D. Chrobak, K. Nordlund, and R. Nowak, "Nondislocation origin of GaAs nanoindentation pop-in event," Phys Rev Lett, vol. 98, p. 045502, Jan 26 2007.
[43] K. Wasmer, R. Gassilloud, J. Michler, and C. Ballif, "Analysis of onset of dislocation nucleation during nanoindentation and nanoscratching of InP," Journal of Materials Research, vol. 27, pp. 320-329, 2011.
[44] N. Begum, A. S. Bhatti, F. Jabeen, S. Rubini, and F. Martelli, "Lineshape analysis of Raman scattering from LO and SO phonons in III-V nanowires," Journal of Applied Physics, vol. 106, p. 114317, 2009.
[45] M. Hilse, Y. Takagaki, J. Herfort, M. Ramsteiner, C. Herrmann, S. Breuer, et al., "Ferromagnet-semiconductor nanowire coaxial heterostructures grown by molecular-beam epitaxy," Applied Physics Letters, vol. 95, p. 133126, 2009.
[46] H. Wang, Y. K. Lai, R. Y. Zheng, Y. Bian, K. Q. Zhang, and C. J. Lin, "Tuning the surface microstructure of titanate coatings on titanium implants for enhancing bioactivity of implants," Int J Nanomedicine, vol. 10, pp. 3887-96, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-06-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw