進階搜尋


下載電子全文  
系統識別號 U0026-2006201623534100
論文名稱(中文) 摻釹固態雷射中由模態競爭引起之脈衝序列與雙波長動力學
論文名稱(英文) Pulse train and dual-wavelength dynamics depended on mode competitions in Neodymium-doped solid-state lasers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 洪崑貴
研究生(英文) Kun-Guei Hong
學號 L78011083
學位類別 博士
語文別 英文
論文頁數 85頁
口試委員 指導教授-魏明達
口試委員-謝文峰
口試委員-陳彥宏
口試委員-林凡異
口試委員-蔡宗祐
口試委員-黃勝廣
口試委員-曾碩彥
中文關鍵字 模態競爭  雙波長  固態雷射    脈衝  雙偏振  光學雙穩態  圓柱向量偏振 
英文關鍵字 mode-competition  dual-wavelength  solid-state laser  Neodymium  pulse  optical bistability  cylindrical vector beam 
學科別分類
中文摘要 本博士論文探討在摻釹固態雷射由模態競爭引發雙波長雷射動力學行為與脈衝行為,並且特別針對1.06 m與1.34 m波長所對應到的兩種能階躍遷路徑引發的雙模態競爭進行研究。我們使用T字型共振腔來研究雙波長雷射,此共振腔優勢在於可單獨調整單一共振腔的雷射參數,以便達成控制單一雷射來觀測另一個雷射的耦合或競爭行為。
我們提供一個製造雙波長脈衝雷射的方法,此方法包含了雷射剛啟動時的脈衝行為(Spiked pulse)與Q開關脈衝(Q-switched pulse)技術,兩者技術所對應到的波長分別為1.34 m與1.06 m,特別是1.34 m共振腔,有別於傳統脈衝雷射需要在共振腔內置入一個開關元件來達成脈衝輸出要件,此共振腔除了無開關元件以外,仍需配合1.06 m共振腔來達成啟動脈衝的條件。此雙波長在雷射增益介質中的光斑大小亦會決定雙波長脈衝是否能達成穩定輸出。在實驗中,我們以Nd:GdVO4晶體與Cr:YAG飽和吸收體為例來達成雙波長脈衝。實驗結果中,11瓦泵源功率可達成穩定雙波長脈衝,脈衝重複頻率為36.5 kHz、1.06 m脈衝寬度為89.5 ns與1.34 m脈衝寬度為427.8 ns.
在研究雙波長雙偏振的模態競爭中,我們由Nd:YVO4晶體搭配T字型共振腔與週期性極化翻轉鈮酸鋰晶體(PPLN)在1.06 m腔內調整損耗觀測到光學雙穩態現象,特別是除了此雙穩態是由跨能階雙波長主導以外,其中兩個波長也分別對應至兩個正交偏振方向。光學雙穩態所囊括的雙波長遲滯路徑行為,將會隨著泵源功率慢慢擴增。
除此之外,若共振腔內有雙折射介質時,則由ordinary ray與extraordinary ray形成雙模態競爭行為,此現象會在圓柱向量偏振光製造過程中會更為顯著。分開兩個模態的方法可由兩道光的光程差著手,特別是雷射共振腔操作在穩定區邊界時,控制共振腔腔長即可得到某單一模態輸出。在這樣的實驗構想下,我們使用的雷射增益介質為雙折射晶體來達成圓柱向量偏振光,其中我們可在實驗上做出方位角偏振的光源,再來配合被動式鎖模光學元件-半導體飽和吸收鏡與共振腔設計,我們達成低閾值的穩定方位角偏振之連續波鎖模雷射,此雷射也具有對熱的不靈敏特性,操作在高功率可忽略熱效應導致的不穩定行為。連續波鎖模脈衝寬度與重複頻率分別為77 ps與125 MHz。
英文摘要 The dual-wavelength Neodymium-doped laser with mode competition and pulse train behavior has been investigated. Dual wavelengths at 1.06 m and 1.34 m corresponding to two transitions of 4F3/2→4I11/2 and F3/2→4I13/2 have been implemented simultaneously emissions in a single laser gain medium on a T-type cavity configuration which was able to independently control the cavity parameters of single laser wavelength for balancing the competition.
In dual-wavelength pulsed laser, a method for generating a dual-wavelength, dual pulse Nd:GdVO4 laser at 1.06 m and 1.34 m is proposed. When the 1.34-m spiking threshold is less than the 1.06-m Q-switched threshold, the generation of a 1.34-m spiking pulse leads a 1.06 μm Q-switched pulse resulting in a dual-wavelength laser. With a pump power of 11 W, the pulse widths are 89.5 and 427.8 ns for 1.06 and 1.34 μm, respectively, with a 36.5-KHz repetition frequency.
To analyze modes competition in dual-wavelength and bipolarized laser, we experimentally demonstrate polarization bistability in a dual-wavelength Nd:YVO4 laser at 1.06 μm and 1.34-m by using an intra-cavity electro-optic periodically poled lithium niobate (EO PPLN) Bragg modulator to control the loss at 1064 nm. An inverse hysteresis switch was observed between 1064 nm and 1342 nm lasers with orthogonal polarizations by increasing and reducing the loss induced by the EO PPLN. The size of the hysteresis increased with increasing pump power. This dissertation provides an explanation based on cross-gain saturation for the bistable behavior of polarization.
Moreover, the mode competition between ordinary and extraordinary rays can be reduced into single mode oscillation to further generate a cylindrical vector beam based on the optical path difference in birefringence laser crystal when the system was operated in the edge of laser stable region. We have proposed a mode-locked Nd-vanadate laser with azimuthal polarization with a semiconductor saturable absorber mirror. On the basis of the birefringence of the laser crystal inducing different equivalent lengths for ordinary and extraordinary rays, beams were azimuthally polarized around the edge of a stable cavity region. In Q-switched mode-locking with cavity length approximate 32 cm, at a pump power of 9 W, the repetition rate and width for the Q-switched envelope were 318 kHz and 0.91 μs, and the mode-locked pulse repetition rate and pulse width were 455 MHz and 65 ps, respectively. The degree of polarization was controllable up to 95.4 ± 1.4%. In continuous wave mode-locking with cavity length approximate 118.5 cm, the repetition rate and pulse width for the continuous-wave mode-locked pulse were 125 MHz and 77 ps, respectively, at a pump power of 11 W. The degree of polarization was 90.0% ± 1.9%. Comparing to the method based on the thermal induced birefringence, the continuous wave mode-locked threshold in our study was sufficiently less than that in the previous studies with about the one-tenth ratio.
論文目次 摘要 i
Abstract iii
Acknowledgment v
Table of Contents vii
List of figure x
Chapter 1 Introduction 1
1.1 Dual-wavelength in Neodymium-doped laser 4
1.1.1 Continuous-wave operation 4
1.1.2 Pulsed operation 5
1.2 Mode-competition 8
1.2.1 Two-mode competition 8
1.2.2 Ordinary and extraordinary ray competition for cylindrical vector beam 10
Chapter 2 Dynamics behavior of dual-wavelength pulses 12
2.1 Laser spiking and relaxation-oscillation frequency 12
2.1.1 Characteristics of laser Spiking 12
2.1.2 Relaxation-oscillation frequency 15
2.2 Experimentally implement 18
2.2.1 T-type cavity configuration 18
2.2.2 Observation of competition behavior on dual-wavelength pulses 20
2.2.3 Stable period one of dual-wavelength pulse train 24
2.3 Numerical simulation of dual-wavelength pulses 26
2.3.1 Spatial-dependence rate equation 26
2.3.2 Discussion on dynamics of dual-wavelength pulses 27
2.3.3 Analysis of period one dual-wavelength pulses 30
2.3.4 Overlapping dual-wavelength pulses 32
2.4 Summary 34
Chapter 3 Dual-wavelength optical bistability from modes competition 35
3.1 Optical bistability based on orthogonal polarization modes 35
3.2 Electro-optical periodically poled lithium niobate Bragg modulator 37
3.3 Experimental investigation of optical bistability 39
3.4 N-mode intensity growth equations 45
3.5 Summary 48
Chapter 4 Azimuthally polarized passive mode-locking 49
4.1 Characteristics of cylindrical vector beam 49
4.1.1 Generation of cylindrical vector beam 49
4.1.2 Pulsed cylindrical vector beam 50
4.2 Q-switched mode locking with azimuthally polarization 52
4.2.1 Ordinary ray preferring to oscillate region 52
4.2.2 Thermal-lens-insensitive cavity configuration 55
4.2.3 Experimental result 56
4.3 Continuous wave mode locking with azimuthally polarization 61
4.3.1 Criterion of Continuous wave mode locking 61
4.3.2 Experimental result 64
4.4 Summary 68
Conclusion 69
Reference 71
參考文獻 1. J. E. Geusic, H. M. Macros, and L. G. Van Uitert, “laser oscillations in Nd-doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnet,” Appl. Phys. Lett. 4, 182-184 (1964).
2. J. R. O’Connor, “Unusual crystal-field energy levels and efficient laser properties of Nd:YVO4,” Appl. Phys. Lett. 9, 407-409 (1066)
3. A. I. Zagumennyi, V. G. Ostroumov, I. A. Shcherbakov, T. Jensen, J. P. Meyen, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071-1072 (1992).
4. A. A. Kaminskii “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev. 1, 93-177 (2007).
5. Z. P. Cai, H. Y. Xu, and G. Stephan, “Bipolarization and multiwavelength diode-pumped Nd:YVO4 microchip laser,” Opt. Commun. 135, 295-299 (1997).
6. H. H. Yu, H. J. Zhang, and J. Y. Wang, “Growth and characterization of vandate laser crystals,” Acta Phys. Pl. A 124, 301-304 (2013).
7. J. Šulc, H. Jelínková, J. K. Jabczyński, W. Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Škoda, “Comparison of diode-side-pumped triangular Nd:YAG and Nd:YAP laser,” Proc. SPIE 5707 (Solid State Lasers XIV: Technoloty and Deviecs) 325-334 (2005).
8. H. J. Tiziani, A. Rothe, and N. Maier, “Dual-wavelength heterodyne differential interferometer for high-precision measurements of reflective aspherical surfaces and step heights,” Appl. Opt. 35, 3525-3533 (1996).
9. Z. Wang, H. Nakane, H. Hu, and J. Zhou, “Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols,” Appl. Opt. 36, 1245-1252 (1997).
10. H. van Brug and R. G Klaver, “On the effective wavelength in two-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 7, 1465-1471 (1998).
11. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. R. Th. Kerstel, “Isotope analysis of water by means of near-infrared dual-wavelength diode laser spectroscopy,” Opt. Express 11, 1566-1576 (2003).
12. N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin” J. Biomed. Opt. 10, 011015 (2005).
13. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50, 3360-3368 (2011).
14. A. David Pearson, S. P. S. Porto, and W. R. Northover, “Laser Oscillations at 0.918, 1.057, and 1.401 Microns in Nd3+‐Doped Borate Glasses,” J. Appl. Phys. 35, 1704-1706 (1964).
15. C. Bethea, “Megawatt power at 1.318 µ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 µ,” IEEE J. Quantum Electron. 9, 254-254 (1973).
16. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475-478 (2000).
17. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20, 622-634 (2010).
18. A. G. Akmanov, A. M. Val’shin, and A. G. Yamaletdinov, “Frequency-tunable YAlO3: Nd3+ laser,” Sov. J. Quantum Electron. 15, 1555 (1986).
19. G. Salamu, E. Osiac, C. Dascalu, N. Pavel, and T. Dascalu, “Simultaneous Dual-Wavelength Operation at 1.06 and 1.34 μm in Nd-Vanadate Laser Crystals,” Laser Phys. 22, 866-871 (2012).
20. Y. F. Lü, X. H. Zhang, J. F. Chen, G. C. Sun, and Z. M. Zhao, “All-solid-state Nd:LuVO4 laser operating at 1066 nm and 1343 nm under diode pumping into the emitting level,” Laser Phys. Lett. 7, 699-702 (2010).
21. N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals,” Laser Phys. 20, 215 (2010).
22. Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20, 737 (2010).
23. D. Krennrich, R. Knappe, B. Henrich, R. Wallenstein, and J. A. L’huillier, “A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3 μm. Part 1: cw-operation,” Appl. Phys. B 92, 165-174 (2008).
24. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17, 6004-6009 (2009).
25. Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Soc. Am. B 29, 2352-2356 (2012).
26. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20, 5644-5651 (2012).
27. Y. Lü, J. Xia, H. Liu, and X. Pu, “Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser,” J. Appl. Phys. 116, 163107 (2014).
28. L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18, 9098-9106 (2010).
29. B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345  nm,” Appl. Opt. 55, 42-46 (2016).
30. K. B. Earnshaw and J. C. Owen, “Dual wavelength optical distance measuring instrument, which corrects for air density,” IEEE J. Quantum Electron. 3, 544-550 (1967).
31. Y. Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539-4543 (1984).
32. V. M. Gelikonov, G. V. Gelikonov, and F. I. Feldchtein, “Two-wavelength optical coherence tomography,” Radiophys. Quantum Electron. 47, 848-859 (2004).
33. J. Liao, J.-L. He, H. Liu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, a periodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159-3161 (2003).
34. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930-3937 (1991).
35. J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang , L. H. Zhang, and Y. Hang, “, High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys.B 79, 301-304 (2004).
36. G.-Y. Jin, C.-T. Wu, X.-Y. Chen, Y.-J. Yu, and C. Wang, “An Innovative Electro-Optic Q-Switch Technology in 1064 nm and 1319 nm Dual-Wavelength Operation of a Nd:YAG Laser,” Chin. Phys. Lett. 30, 034209 (2013).
37. Y.-E Hou, Y.-X. Fan, J.-L. He, and H.-T. Wang, “High-efficiency continuous-wave and Q-switched diode-end-pumped multi-wavelength Nd:YAG lasers,” Opt. Commun. 265, 301-305 (2006).
38. X.-W. Fan, J.-L. He, H.-T. Huang, and L. Xue, “An Intermittent Oscillation Dual-Wavelength Diode-Pumped Nd:YAG Laser,” IEEE J. Quantum Electron. 43, 884-888 (2007).
39. S. Kück, K. Petermann, and G. Huber, “Spectroscopic Investigation of the Cr4+ -Center in YAG,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, 1991), paper C4L16.
40. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG– a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555-558 (1998).
41. H. Chu, S. Zhao, Y. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, and C. Feng, “Simultaneous dual-wavelength operation around 1.06 µm of a LD-end-pumped, passively Q-switched Nd:GGG laser with GaAs as saturable absorber,” Laser Phys. 23 085009 (2013).
42. B. L. Wang, H. H. Yu, H. Zhang, C. J. Zhao, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological Insulator Simultaneously Q-Switched Dual-Wavelength Nd:Lu2O3 Laser,” IEEE Photonics Journal 6, 1501007 (2014).
43. Y. Zhao, X. Li, M. Xu, H. Yu, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber,” Opt. Express 21, 3516-3522 (2013).
44. L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, “Simultaneous dual-wavelength Q-switched Nd:YAG laser operating at 1.06 m and 946 nm,” Opt. Commun. 264, 51-54(2006).
45. S. D. Liu, L. H. Zheng, J. L. He, J. Xu, X. D. Xu, L. B. Su, K. J. Yang, B. T. Zhang, R. H. Wang, and X. M. Liu, “Passively Q-switched Nd:Sc0.2Y0.8SiO5 dual-wavelength laser with the orthogonally polarized output,” Opt. Express 20, 22448-22453 (2012).
46. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34, 151-153 (2009).
47. F. Pallas, E. Herault, J.-F. Roux, A. Kevorkian, J.-L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett. 37, 2817-2819 (2012).
48. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94, 041126 (2009)
49. Z. Wang, H. Liu, J. Wang, Y. Lv, Y. Sang, R. Lan, H. Yu, X. Xu, and Z. Shao, “Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser,” Opt. Express 17, 12076-12081 (2009).
50. K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 um in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814-816 (1993).
51. B. A. Ghani and M. Hammadi, “Computational model of dual Q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by a Nd-glass laser,” J. Opt. A: Pure Appl. Opt. 8, 229-235 (2006).
52. H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18, 3352-3357 (2010).
53. P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, “Synchronization of 1064 and 1342 nm pulses using passive saturable absorbers,” Opt. Commun. 241, 487-492 (2004).
54. F. Liu, J. He, B. Zhang, J. Xu, X. Dong, K. Yang, H. Xia, and H. Zhang, “Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34μm with a V3+:YAG saturable absorber,” Opt. Express 16, 11759-11763 (2008).
55. H. Jelínková, P. Černý, J.Šulc, J.K. Jabczyński, K. Kopczyński, Z. Mierczyk, M. Miyagi, Y. Matsuura, and Y.-W. Shi, “Nd:YAP 1.34-m/1.08-m laser passively mode-locked and Q-switched by V3+:YAG/BDN II saturable absorbers with efficient radiation delivery through a hollow glass waveguide coated with COP/Ag,” Opt. Eng. 41 1976-1982 (2002).
56. H. T. Huang, J. L. He, B. T. Zhang, K. J. Yang, C. H. Zuo, J. L. Xu, X. L. Dong, and S. Zhao, “Intermittent oscillation of 1064 nm and 1342 nm obtained in a diode-pumped doubly passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 96, 815-820 (2009).
57. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, “1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAlO3 pulsed laser,” Appl. Opt. 32, 5952-5957 (1993).
58. T.-Y. Tsai, Y.-C. Fang, H.i-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all- Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18, 23523-23528 (2010).
59. T.-Y. Tsai, H.-H. Ma, Y.-C. Fang, H.-X. Tsao, and S.-T. Lin, “Self-balanced Q- and gain-switched erbium all-fiber laser,” AIP Advances 1, 032155 (2011).
60. Tzong-Yow Tsai, Yen-Cheng Fang, Hong-Xi Tsao, Shih-Ting Lin, and Chieh Hu, “Passively cascade-pulsed erbium ZBLAN all-fiber laser,” Opt. Express 20, 12787-12792 (2012).
61. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33, 1872-1874 (2008).
62. Z. Cong, D. Tang, W. D. Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19, 3984-3989 (2011).
63. J.-L. Xu, S.-Y. Guo, J.-L. He , B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107, 53-58 (2012).
64. Y. Yang, Z.-T. Jia, J.-L. He, J.-L. Xu, B.-T. Zhang, R.-H. Wang, X.-M. Liu, J. Hou, F. Lou, Z.-W. Wang, H. Yang, and X.-T. Tao, “Dual-wavelength synchronously passively mode-locked Nd:LGGG 1.3 μm laser with SESAM,” Laser Phys. Lett. 10, 045807 (2013)
65. F. Zhang, X. Fan, J. Liu, F. Ma, D. Jiang, S. Pang, L. Su, and J. Xu, “Dual-wavelength mode-locked operation on a novel Nd3+,Gd3+:SrF2 crystal laser,” Opt. Mater. Express 6, 1513-1519 (2016).
66. Y.-J. Huang, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode-Locked Picosecond Laser Operating on the 4F3/2→4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).
67. A. Siegman, Lasers (University Science, 1986).
68. M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
69. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896-898 (2000).
70. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79, 063814 (2009).
71. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006).
72. Y. F. Chen, Y. P. Lan, and H. L. Chang, “Analytical model for design criteria of passively Q-switched lasers,” IEEE J. Quantum Electron. 37, 462-468 (2001).
73. K.-G. Hong and M.-D. Wei, “Simultaneous dual-wavelength pulses achieved by mixing spiking and passive Q-switching in a pulsed Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” Opt. Lett. 41, 2153-2156 (2016).
74. O. Svelto, Principles of lasers, 5th ed. (Springer, 2010), Chap. 7. and Appendix E.
75. P. Laporta and M. Brussard, “Design Criteria for Mode Size Optimization in Diode-Pumped Solid-state Lasers,” IEEE J. Quantum Electron. 27, 2319-2326 (1991).
76. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-switched lasers,” J. Opt. Soc. Am. B 17, 1166-1175 (2000).
77. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373-379 (1994).
78. D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28, 325-327 (2003).
79. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
80. L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18, 238-254 (1978).
81. S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66, 100-103 (1979).
82. K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34, 376-378 (1979).
83. H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quant. Electron. 3, 1254-1270 (1997).
84. C. S. Lee and H. Osada, “Observation of optical bistability due to resonator configuration transition,” Opt. Lett. 10, 232-234 (1985).
85. J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33, 1810-1812 (2008).
86. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14, 12183-12187 (2006).
87. X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32, 2333-2335 (2007).
88. H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4, 102701 (2011).
89. Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quant. Electron. 19, S93-S102 (1987).
90. H. Kawaguchi, “Polarization bistable laser diodes,” J. Nonlinear Opt. Phys. Mat. 2, 367-389 (1993).
91. G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75, 93-100 (1990).
92. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70, 2070-2072 (1997).
93. P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148, 270-274 (1998).
94. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18, 5008-5014 (2010).
95. J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85, 545-548 (2006).
96. M. Yamada and M. Saitoh, “Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystal,” Appl. Phys. Lett. 69, 3659-3661 (1996).
97. M. Yamada, “Elelctrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. of Sci. Instr. 71, 4010-4016 (2000).
98. S. T. Lin, G.W. Chang, Y.Y. Lin, Y.C. Huang, A.C. Chiang, and Y.H. Chen, “Monolithically integrated laser Bragg Q-switch and wavelength converter in a PPLN crystal,” Opt. Express 25, 17093-17098 (2007).
99. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett. 32, 545-547 (2007).
100. C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21, 1871-1875 (2011).
101. J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85, 545-548 (2006).
102. K.-G. Hong, S.-T. Lin, and M.-D. Wei, “Polarization bistability associated with 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions in Nd:YVO4 laser with intra-cavity periodically poled lithium niobate Bragg modulator,” Opt. Express 23, 17979-17987 (2015).
103. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25, 896-898 (2000).
104. J.-Y. Ko, C.-C. Lin, K. Otsuka, Y. Miyasaka, K. Kamikariya, K. Nemoto, M.-C. Ho, and I-M. Jiang, “Experimental observations of dual-olarization oscillations in laser-diode-pumped wide-aperture thin-slice Nd:GdVO4 lasers,” Opt. Express 15, 945-954 (2007).
105. H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quant. Electron. 3, 1254-1270 (1997).
106. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
107. T. A. Nieminen, N. R. Heckenberg, and H. R. Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122-124 (2008).
108. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539-3545 (1997).
109. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
110. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
111. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329-334 (2007).
112. Q. Zhan, “Trapping nanoparticles with cylindrical polarization,” Proc. SPIE 5514, 275–282 (2004).
113. J. R. Zurita-Sánchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722-2726 (2002).
114. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650-2656 (2006).
115. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990).
116. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 22, 3063-3065 (2005).
117. K.-C. Chang, T. Lin and M.-D. Wei, “Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apexangle axicon,” Opt. Express 12, 16035-16042 (2013).
118. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807-809 (2003).
119. Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal,” Appl. Phys. B 88, 43-46 (2007).
120. M. P. Thirugnanasambandam, Y. Senatsky, and K.-I. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19, 1905-1914 (2011).
121. M.-D. Wei, Y.-S. Lai, and K.-C. Chang, “Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser,” Opt. Lett. 38, 2443-2445 (2013).
122. S. Vyas, Y. Kozawa, and S. Sato, “Generation of radially polarized Bessel–Gaussian beams from c-cut Nd:YVO4 laser,” Opt. Lett. 39, 1101-1104 (2014).
123. K. G. Xia, K. I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47-51 (2012).
124. J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686-2688 (2008).
125. K.-C. Chang, D.-L. Li, and M.-D. Wei, “Self-sustaining azimuthal polarization in a passively Q-switched Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 31, 382-386 (2014).
126. U. Keller, T. K. Woodward, D. L. Sivco, and A. Y. Cho, “Coupled-cavity resonant passive mode-locked Nd:yttrium lithium fluoride laser,” Opt. Lett. 16, 390-392 (1991).
127. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077-3083 (2009).
128. F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34, 2030-2032 (2009).
129. H. Jianhong, D. Jing, C. Yongge, W. Wen, Z. Hui, L. Jinhui, S. Fei, G. Yan, D. Shutao, and L. Wenxiong, “Passively mode-locked radially polarized laser based on ceramic Nd:YAG rod,” Opt. Express 19, 2120-2125 (2011).
130. L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively Mode-Locked Radially Polarized Nd-Doped Yttrium Aluminum Garnet Laser Based on Graphene-Based Saturable Absorber,” Appl. Phys. Express 6, 082701 (2013).
131. K.-G. Hong, B.-J. Hung, S.-T. Lin, and M.-D. Wei, “Q-switched mode-locked and azimuthally polarized Nd:GdVO4 laser with semiconductor saturable absorber mirror,” Jpn. J. Appl. Phys. 55, pre-accepted (2016).
132. K. Yonezawa, Y. Kozawa, and S. Sato, “Focusing of radially and azimuthally polarized beams through a uniaxial crystal,” J. Opt. Soc. Am. A 25, 469-472 (2008).
133. Y. Aasakawa, R. Kawai, K. Ohki, and K. Otsuka, “Laser-Diode-Pumped Microchip LiNdP4O12 Lasers under Different Pump-Beam Focusing Conditions,” Jpn. J. Appl. Phys. 38, L515-L517 (1999).
134. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (> 100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11, 621-625 (2005).
135. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201-217 (1986).
136. H.-W. Yang, C. Kim, S. Y. Choi, G.-H. Kim, Y. Kobayashi, F. Rotermund, and J. Kim, “1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror,” Opt. Express 20, 29518-29523 (2012).
137. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
138. R. Takeuchi, Y. Kozawa, and S. Sato, “Polarization coupling of vector Bessel–Gaussian beams,” J. Opt. 15, 075710 (2013).
139. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46-56 (1999).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-03-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-03-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw