進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2006201416495100
論文名稱(中文) 使用模擬最佳化於多階層生產系統選擇最佳檢查策略
論文名稱(英文) Using Simulation Optimization to Choose an Optimal Inspection Policy in Multistage Production System
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 102
學期 2
出版年 103
研究生(中文) 洪銘聰
研究生(英文) Ming-Tsung Hung
學號 R36014032
學位類別 碩士
語文別 中文
論文頁數 53頁
口試委員 指導教授-蔡青志
口試委員-張裕清
口試委員-劉任修
中文關鍵字 多階層生產系統  檢查問題  多重可行性驗證程序  模擬最佳化  超模型 
英文關鍵字 Multistage production system  Inspection problem  Multiple Feasibility Check Procedure  Simulation Optimization  Metamodel 
學科別分類
中文摘要 為了確保產品送至消費者手中的品質,如何有效的在多階層生產系統中設置檢查站和檢查策略的問題,在近年來逐漸受到管理者的重視。本研究針對多階層生產系統檢查問題進行探討,此生產系統由多階層的加工站和檢查站組成。在生產過程中,工件會因為人員疏失或機器故障等因素變成不良品,因此需要在加工站後面安排一個檢查站來降低不良品。同時在檢查過程中也有可能發生誤判的情形。本研究是希望能在滿足各個生產階層期望出廠品質的門檻下,找出各個檢查站的檢查抽樣數和抽樣中可被接受的不良品數,使總成本達到最小化。過去雖然有很多學者發展了不同的啓發式演算法,用來處理多階層生產系統之檢查問題,且能在樣本數很大時得到近似最佳解。但透過啓發式演算法並不能保證所得到的解為可行解,且樣本數目愈大代表花費的成本愈多。
有鑑於此,本研究以模擬最佳化(Simulation Optimization)演算法中之超模型(Metamodel)為基礎,來減少所需的模擬抽樣數,並結合排序與選擇程序(Ranking and Selection; R&S)發展之多重可行性驗證程序(Multiple Feasibility Check Procedure; MFCP),針對多重隨機限制式進行可行性驗證,在1-α信心水準之下保證所找到的解為可行解。
英文摘要 The aim of this study is to develop a heuristic for a multistage production system to find the optimal sample size and acceptance number for each stage, which can minimize the total cost while maintaining the required average outgoing quality. The heuristic uses metamodel to reduce the required replications of simulation, and combines with multiple feasibility check procedure to guarantee that the solution we found is feasible with respect to multiple stochastic constraints under a specified confidence level. The heuristic is compared with the OptQuest which is commonly embedded in Arena. The results show that our heuristic outperforms OptQuest in terms of objective values and the probability of finding feasible solutions.
論文目次 摘要 i
英文延伸摘要 ii
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xi

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 4

第二章 文獻探討 5
2.1 多階層生產系統之檢查問題(Inspection Problem for a Multistage Production System) 5
2.2 超模型(Metamodel) 8
2.3 排序與選擇程序(Ranking and Selection; R&S) 11
2.4 小結 17

第三章 研究方法 19
3.1 多階層生產系統檢查問題與問題假設 19
3.2 多階層生產系統檢查問題之離散型模擬最佳化演算法 26

第四章 實驗情境與分析 32
4.1 實驗評估 32
4.2 實驗與參數設定 33
4.2.1 模擬模型之實驗與參數設定 33
4.2.2 MMF之建構與實驗參數設定 33
4.2.3 OptQuest之實驗與參數設定 35
4.3 實驗情境 36
4.4 實驗結果 38
4.4.1 MMF和OptQuest比較 38
4.4.2 MMF之探討 42
4.5 小結 47

第五章 結論與未來研究方向 48
5.1 結論 48
5.2 未來研究方向 49

參考文獻 50
參考文獻 S. Andradottir and S. H. Kim, “Fully sequential procedures for comparing constrained systems via simulation,” Nav. Res. Logist., vol. 57, no. 5, pp. 403–421, 2010.

E. Angun, J. P. C. Kleijnen, D. den Hertog and G. Gurkan, “Response surface methodology with stochastic constraints for expensive simulation,” J. Oper. Res. Soc., vol. 60, no. 6, pp. 735–746, 2009.

A. Azadeh, M. S. Sangari and A. S. Amiri, “A particle swarm algorithm for inspection optimization in serial multi-stage processes,” Appl. Math. Modell., vol. 36, no. 4, pp. 1455–1464, 2012.

R. R. Barton and M. Meckesheimer, “Metamodel-based simulation optimization,” in Handbooks in Operations Research and Management Science: Simulation, S. G. Henderson and B. L. Nelson, Eds. North Holland: Elsevier Science, 2006, pp. 535–574.

I. Batmaz and S. Tunali, “Small response surface designs for metamodel estimation,” Eur. J. Oper. Res., vol. 145, no. 2, pp. 455–470, 2003.

D. Batur and S. H. Kim, “Finding feasible systems in the presence of constraints on multiple performance measures,” ACM Trans. Model. Comput. Simul., vol. 20, no. 3, pp. 1–29, 2010.

J. Butler, D. J. Morrice and P. W. Mullarkey, “A multiple attribute utility theory approach to ranking and selection,” Manage. Sci., vol. 47, no. 6, pp. 800–816, 2001.

G. Derringer and R. Suich, “Simultaneous optimization of several response variables,” J. Qual. Technol., vol. 12, no. 4, pp. 214–219, 1980.

S. O. Duffuaa and M. Khan, “Impact of inspection errors on the performance measures of a general repeat inspection plan,” Int. J. Prod. Res., vol. 43, no. 23, pp. 4945–4967, 2005.

S. O. Duffuaa and M. Khan, “A general repeat inspection plan for dependent multicharacteristic critical components,” Eur. J. Oper. Res., vol. 191, no. 2, pp. 374–385, 2008.

A. Heredia-Langner, D. C. Montgomery and W. M. Carlyle, “Solving a multistage partial inspection problem using genetic algorithms,” Int. J. Prod. Res., vol. 40, no. 8, pp. 1923–1940, 2002.

M. D. L. A. Irizarry, J. R. Wilson and J. Trevino, “A flexible simulation tool for manufacturing-cell design, II: response surface analysis and case study,” IIE Trans., vol. 33, no. 10, pp. 837–846, 2001.

J. P. C. Kleijnen and J. Wan, “Optimization of simulated systems: OptQuest and alternatives,” Simul. Modell. Pract. Theory, vol. 15, no. 3, pp. 354–362, 2007.

G. N. Lauer, “Acceptance probabilities for sampling plans where the proportion defective has a beta distribution,” J. Qual. Technol., vol. 10, no. 2, pp. 52–55, 1978.

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed. New York: McGraw-Hill, 2000.

J. Lee and S. Unnikrishnan, “Planning quality inspection operations in multistage manufacturing systems with inspection errors,” Int. J. Prod. Res., vol. 36, no. 1, pp. 141–156, 1998.

S. S. Mandroli, A. K. Shrivastava and Y. Ding, “A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes,” IIE Trans., vol. 38, no. 4, pp. 309–328, 2006.

J. H. Noguera and E. F. Watson, “Response surface analysis of a multi-product batch processing facility using a simulation metamodel,” Int. J. Prod. Econ., vol. 102, no. 2, pp. 333–343, 2006.

T. J. Santner and A. C. Tamhane, “Designing experiments for selecting a normal population with a large mean and a small variance,” in Design of Experiments: Ranking and Selection, R. E. Bechhofer, T. J. Santer and A. C. Tamhane, Eds. New York: Marcel-Dekker, 1984, pp. 179–198.

M. I. Santos and A. M. Porta Nova, “Statistical fitting and validation of non-linear simulation metamodels: A case study,” Eur. J. Oper. Res., vol. 171, no. 1, pp. 53–63, 2006.

A. G. Shetwan, V. I. Vitanov and B. Tjahjono, “Allocation of quality control stations in multistage manufacturing systems,” Comput. Ind. Eng., vol. 60, no. 4, pp. 473–484, 2011.

Y. R. Shiau, “Inspection resource assignment in a multistage manufacturing system with an inspection error model,” Int. J. Prod. Res., vol. 40, no. 8, pp. 1787–1806, 2002.

A. Vaghefi and V. Sarhangian, “Contribution of simulation to the optimization of inspection plans for multi-stage manufacturing systems,” Comput. Ind. Eng., vol. 57, no. 4, pp. 1226–1234, 2009.

S. Van Volsem, W. Dullaert and H. Van Landeghem, “An evolutionary algorithm and discrete event simulation for optimizing inspection strategies for multi-stage processes,” Eur. J. Oper. Res., vol. 179, no. 3, pp. 621–633, 2007.

Z. Wu, M. Xie and Z. Wang, “Optimum rectifying inspection plans,” Int. J. Prod. Res., vol. 39, no. 8, pp. 1575–1588, 2001.

O. Yalcınkaya and G. M. Bayhan, “Modelling and optimization of average travel time for a metro line by simulation and response surface methodology,” Eur. J. Oper. Res., vol. 196, no. 1, pp. 225–233, 2009.

B. Yu and K. Popplewell, “Metamodels in manufacturing: a review,” Int. J. Prod. Res., vol. 32, no. 4, pp. 787–796, 1994.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw