進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2006201112332900
論文名稱(中文) 添加氧化鋯(ZrO2)對合成K2O-CaO-MgO-Al2O3-SiO2玻璃陶瓷結晶行為,介電性質及機械性質之影響
論文名稱(英文) Effects of Zirconium Oxide Addition on the Crystallization Behavior,Dielectric Properties and Mechanical Properties of the K2O-CaO-MgO-Al2O3-SiO2 Glass Ceramics
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 王鐘慶
研究生(英文) Chung-Ching Wang
學號 n46984113
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 口試委員-曾文甲
口試委員-許志雄
口試委員-顏富士
指導教授-向性一
中文關鍵字 氧化鋯  玻璃陶瓷  鈣斜長石 
英文關鍵字 Zirconium oxide  Glass ceramic  Anorthite 
學科別分類
中文摘要 本論文研究不同氧化鋯添加量對K2O-CaO-MgO-Al2O3-SiO2玻璃系統之結晶行為、介電性質及機械性質之影響。實驗結果發現此玻璃系統於680℃時軟化,以黏滯流動促進胚體燒結緻密,之後於850℃~950℃間依序生成KMg2AlSi4O12、CaAl2Si2O8等結晶相。添加2wt%氧化鋯將促使鈣斜長石相提早在900℃時大量生成,但添加8wt%氧化鋯將延後其它結晶相的生成,增加玻璃液相緻密化階段,此時正方晶相氧化鋯將提前於850℃生成,以100-200nm晶粒大小均勻分散在玻璃體中。玻璃陶瓷液相燒結活化能介於400~480KJ/mol,氧化鋯添加將使玻璃新增第二段液相燒結,提高燒結活化能。
對玻璃陶瓷介電性質而言,鈣斜長石相生成及微孔洞增多,使介電常數在900℃1小時下的 (εr′)介於6.4~6.8(100MHz)之間,品質因子介於250~400。另外,10~ 20(vol%)氧化鋁填料對玻璃陶瓷結晶行為影響不大,但相對提高介電常數使(εr′)上升至7以上。
玻璃陶瓷表面維氏硬度值因950℃時長條狀鈣斜長石生成,加上陶瓷體內部微孔洞增大而下降,添加氧化鋯將有助於高硬度之正方晶相氧化鋯析出,抑制鈣斜長石產生異向性晶粒成長,使玻璃陶瓷在950℃下的硬度值維持在4GPa。
而玻璃陶瓷在900℃1小時下四點抗折破斷強度值介於60~85(MPa),氧化鋯添加有效提高10~20(MPa)破斷強度。但氧化鋁填料雖有效提高維氏硬度值,因燒結時胚體出現裂縫,反而未有效提高破斷強度值。
藉由添加10~20(vol%)氧化鋁填料改變玻璃陶瓷燒結收縮曲線,以匹配Co2Y ferrite的共燒行為,但兩者起使縮縮溫度相差150℃以上,使兩種材料無法共燒。
英文摘要 Zirconium oxide effects on the crystallization, dielectric properties and mechanical properties of K2O-CaO-MgO-Al2O3-SiO2 glass were investigated. The results showed that the onset shrinkage occurred at around the glass transition temperature (Tg = 680℃) and the samples densified via viscous flow. KMg2AlSi4O12, CaAl2Si2O8 crystallites were observed in sequence during sintering at 850-950℃. For the glass with 8 wt% ZrO2, homogeneously dispersed t- ZrO2 crystallites with grain sizes of 100-200 nm were observed at 850℃. The as-prepared K2O-CaO-MgO- Al2O3-SiO2 glass ceramics exhibited a dielectric constant of 6.4-6.8 and a dielectric loss of below 0.005 at 100 MHz. The Vicker hardness decreased with increasing sintering temperature due to the formation of elongated anorthite crystallites accompanied with pore formation. The Vicker hardness can be remained at 4 GPa after sintering at 950℃ for the sample with 8 wt% zirconia, which can prevent the formation of elongated anorthite crystallites by forming t-ZrO2 crystallites. The 4-points flexture strength of the glass ceramic substrate are about 60-80 MPa . The integral Co2Y - LTCC multi-layer device can not be successfully obtained due to the mismatch shrinkage of glass-ceramics and Co2Y ferrite.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 序論 1
1.1前言 1
1.2研究動機與目的 2
第二章 前人研究與理論基礎 3
2.1低溫共燒陶瓷(Low Temperature Co-fired Ceramic) 3
2.2玻璃陶瓷(Glass-Ceramic) 8
2.3 玻璃陶瓷的燒結緻密化行為 9
2.3.1玻璃液相燒結 9
2.3.2 緻密化與結晶溫度的關係 11
2.3.3 添加劑對玻璃陶瓷燒結性和結晶之影響 11
2.4 CaO-Al2O3-SiO2玻璃陶瓷 12
2.4.1 CaO-Al2O3-SiO2系統 12
2.4.2添加劑對CaO-Al2O3-SiO2玻璃陶瓷之影響 14
2.4.3 CaO-Al2O3-SiO2玻璃陶瓷介電性質 16
2.4.4 CaO-Al2O3-SiO2玻璃陶瓷機械性質 18
2.5 介電性質 20
2.5.1 介電基本原理 20
2.5.2 極化的機制 21
2.6多層陶瓷基板共燒行為 22
第三章 實驗步驟與方法 23
3.1 實驗流程圖 23
3.1.1 玻璃粉末之製備 23
3.1.2 試片製備及燒結 24
3.2 材料分析 24
3.2.1粉末比表面積 24
3.2.2 X-ray螢光成分分析(XRF) 25
3.2.3熱膨脹分析(DIL) 25
3.2.4熱分析(DTA/TG) 25
3.2.5結晶相鑑定 25
3.2.6顯微結構觀察 25
3.2.7玻璃陶瓷體密度、孔隙率 26
3.2.8介電性質量測 26
3.2.9維氏硬度量測 26
3.2.10抗彎強度測試 26
第四章 結果與討論 27
4.1 玻璃陶瓷非等溫燒結 27
4.1.1 添加氧化鋯對燒結緻密化行為之影響 27
4.1.2 添加氧化鋯對燒結活化能之影響 29
4.1.3添加氧化鋯對結晶行為之影響 35
4.1.4 添加氧化鋯對顯微結構之影響 42
4.1.5 添加氧化鋯對體密度、孔隙率之影響 48
4.1.6 添加Al2O3 filler對玻璃陶瓷緻密行為,結晶行為及顯微結構之影響 50
4.2玻璃陶瓷等溫燒結 55
4.2.1添加氧化鋯對結晶行為之影響 55
4.2.2添加氧化鋯對顯微結構之影響 57
4.3 玻璃陶瓷介電性質 60
4.3.1結晶行為、微孔洞對介電常數、介電損失之影響 60
4.3.2添加Al2O3 filler對介電常數(K 值)、介電損失(tan δ)之影響 61
4.4 玻璃陶瓷硬度及機械性質 62
4.4.1 緻密化與結晶相對維氏硬度之影響 62
4.4.2 緻密化與結晶相對抗彎強度之影響 63
4.5玻璃陶瓷基板和Co2Y鐵氧磁體層共燒 66
4.5.1添加Al2O3 filler對玻璃陶瓷與Co2Y鐵氧磁體積介面反應之影響 66
4.5.2熱收縮行為對玻璃陶瓷基板和Co2Y鐵氧磁體共燒之影響 66
第五章 結論 70
第六章 參考文獻 71
附錄 74

參考文獻 1H. Birol,T. Maeder, C. Jacq, S. Straessler, and P. Ryser, “Fabrication of Low-Temperature Co-Fired Ceramics Micro-Fluidic Devices Using Sacrificial Carbon Layers”, Int. J. Appl. Ceram. Technol., 2 [5] 364–373 (2005) .
2M. T. Sebastian, H. Jantunen, “Low loss dielectric materials for LTCC applications: a review”, Int. Mater. Rev., 53 [2] 57-90 (2008).
3S. F. Wang, C. C. Chiang, Y. R. Wang, and Y. F. Hsu, “Effects of Additives on the Densification and Microwave Dielectric Properties of Binary CaO–B2O3–SiO2 Glass”, Jpn. J. Appl. Phys., 49 021101 (2010).
4H. Zhu, H. Zhou, M. Liu, P. Wei, G. Xu, G. Ning, “Microstructure and microwave dielectric characteristics of CaO–B2O3– SiO2 glass ceramics”, J. Mater. Sci: Mater. Electron., 20, 1135–1139 (2009).
5J. H. Jean, Y. C. Fang, S. X. Dai, D. L. SR Wilcox, “Devitrification Kinetics and Mechanism of K2O– CaO–SrO–BaO–B2O3–SiO2 Glass- Ceramic”, J. Am. Ceram. Soc., 84 [6] 1354-1360 (2001).
6V. M. F. Marques, D. U. Tulyaganov, S. Agathopoulos ,V. Kh. Gataullin, G. P. Kothiyal, J. M. F. Ferreira, “Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts”, J. Eur. Ceram. Soc., 26, 2503–2510(2006).
7C. J. D. Kumar, E. K. Sunny, and N. Raghu, “Synthesis and Characterization of Crystallizable Anorthite-Based Glass for a Low-Temperature Cofired Ceramic Application”, J. Am. Ceram. Soc., 91 [2] 652–655 (2008).
8S. Banijamali, B. E. Yekta, H. R. Rezaie, V. K. Marghussian, “Crystallization and sintering characteristics of CaO–Al2O3– SiO2 glasses in the presence of TiO2, CaF2 and ZrO2”, Thermo. Acta., 488, 60–65 (2009).
9C. L. Lo, J. G. Duh, B. S. Chiou, W. H. Lee, “Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass- Ceramics”, J. Am. Ceram. Soc., 85 [9] 2230–35 (2002).
10C. L. Lo, J. G. Duh, B. S. Chiou, “Low temperature sintering and crystallization behaviour of low loss anorthite-based glass-ceramics”, J. Mater. Sci., 38, 693– 698 (2003).
11L. J. Golonka, “ Technology and applications of Low Temperature Cofired Ceramic(LTCC) based sensors and microsystems” , Bulletin of the Polish Academy of Sciemces Technical Sciences, 54 [2], (2006).
12R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s”, J. Am. Ceram. Soc., 74 [5] 895-908 (1991).

13W. D. Kingery,H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics, 2nd Edition (1975) , ” Wiley-Interscience publication, printed in the USA .
14 G.H. Beall, “Structure, properties and applications of glass-ceramics. ” In: L.L. Hench and S.W. Freiman, Editors, Advances in Nucleation and Crystallization in Glasses, American Ceramic Society, Westerville, OH (1972).
15W. D. Kingery , M. Berg , “Study of Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation,and Self-Diffusion,” J. Appl. Phys., 26 [10] 1205-12 (1955).
16W. D. Kingery , “Densification During Sintering in the Presence of a Liquid Phase. I. Theory,” J. Appl. Phys., 30 (3) 301-306 (1959) .
17M. Godinho, Jr., E. Longo, E. R. Leite, R. Aguiar , “ In-situ observation of glass particles sintering ,” J. Chem. Educ. 83 (3) 410-413 (2006).
18H. C. Park, S. H. Lee, B. K. Ryu, M. M. Son, H. S. Lee and I. Yasui , “Nucleation and crystallization kinetics of CaO-Al2O3-2SiO2 in powdered anorthite glass ,” J. Mater. Sci., 31, 4249– 4253 (1996).
19Y. C. Fang, “Effect of oxide additive on densification and devitrification kinectics and mechnism of glass-ceramic,” MSE Theses,NTHU,(2001).
20J. H. Jean, J. I. Shin, C. R. Chang and C. H. Lin, “Densification Kinetics and mechanism of a low-dielectric glass composite,” J. Mater. Chem. Phys., 41 260-265 (1995).
21O. P. Thakur, D. Kumar, O. Parkash and L. Pandey, “Effect of K2O addition on crystallization and microstructure behavior of the strontium titanate-borosilicate glass-ceramic system,” J. Mater. Lett., 23 253-260 (1995).
22Y. M. Sung, “Phase formation kinetic in SrO-Al2O3-SiO2-B2O3 glass,” J. Mater. Sci., 37 699-703 (2002).
23S. Kavalci,“The use of boron-containing additives for synthesis of anorthite ceramic powders,” MSE Theses,İzmir(Turkey) (2006).
24P. Islam, R. Hill, A. Stamboulis,“Activation energy for crystal growth in stoichiometric CaAl2Si2O8 and Ca2Al2Si2O9 glasses,” J. Mater. Lett., 22 1287-1289 (2003).
25R. Wang, J. Zhou, H. Zhao, B. Li, L. Li,“Oxyfluoride glass-silica ceramic composite for low temperature co-fired ceramics,” J. Eur. Ceram. Soc., 28 2877–2881(2008).
26S. Banijamali, H.R. Rezaei, B. Eftekhari Yekta, V.K. Marghussian,“ Sinterability, crystallization and properties of glass–ceramic tiles belonging to CaF2–CaO–MgO–Al2O3– SiO2 system,” Ceram. Int., 33 [8] 1557-1561(2007).
27J.H.Park,“Solidification structure of CaO–SiO2–MgO–Al2O3(–CaF2) systems and computational phase equilibria: Crystallization of MgAl2O4 spinel,” Computer Coupling of Phase Diagrams and Thermochemistry.,31 428–437 (2007) .
28R.D.Shannon,J.E.Dickinson,George R. Rossman,“ Dielectric Constants of Crystalline and Amorphous Spodumene,Anorthite and Diopside and the Oxide Additivity Rule,” Phys Chem Minerals,19 148-156 (1992).
29R. Pazhani, H. Padma Kumar, Angeo Varghese, A. Moses Ezhil Raj, Sam Solomon, J.K. Thomas,“Synthesis, vacuum sintering and dielectric characterization of zirconia (t-ZrO2) nanopowder,” J. Alloys and Compounds, 509 6819–6823 (2011).
30 J. Kim ,S. Hwang ,W. Sung, H. Kim, “Effect of anorthite and diopside on dielectric properties of Al2O3/glass composite based on high strength of LTCC substrate”, J Mater Sci., 43, 4009–4015 (2008).
31J. Kim ,S. Hwang ,W. Sung, H. Kim, “Thermal and dielectric properties of glass-ceramics sintered based on diopside and anorthite composition”, J. Electroceram. , 23 209–213 (2009).
32K. S. Kim, H. S. Jang, H. Shin, I. T. Kim, S. Kim, Y. H. Han, and S. O. Yoon, “Various Filler Added CaO-Al2O3-SiO2 Glass Composites for LTCC Substrate Applications”, J. Korean Ceram. Soc., 46 [3] 323–329 (2009).
33R. Wang, J. Zhou, X.G. Huang, L. Sun, L. T. Li,“Oxyfluoride glass-ceramic composites for low temperature co-fired ceramic substrate,” Ferroelectrics, 388 31–35 (2009).
34V. M. F. Marques, D. U. Tulyaganov, G. P. Kothiyal, J. M. F. Ferreira, “ The effect of TiO2 and P2O5 on densification behavior and properties of Anortite-Diopside glass-ceramic substrates ”, J. Electroceram., 25 38–44 (2010).
35R. V. Hippel, “ Dielectrics and Waves”, Artech House, (1995), New York,Wiley (1954).
36Y. J. Choi, J. H. Park, W. J. Ko, I. S. Hwang, J. H. Park, J. G. Park, S.Nahm, “Co-Firing and Shrinkage Matching in Low- and Middle- Permittivity Dielectric Compositions for a Low-Temperature Co-FiredCeramics System ”, J. Am. Ceram. Soc., 89 [2] 562–567 (2006).
37Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, “Preparation and electromagnetic properties of ferrite–cordierite composites”, J. Mater. Lett., 44 279-283 (2000).
38P. Reig, G. Demazeau,R. Naslain, “KMg2AlSi4O12 phyllosiloxide as potential interphase material for ceramic matrix composites”, J Mater Sci., 32 4189-4194 (1997).
39秦小梅,孙祥云,苏雷,李松,姜艳丽, “ZrO2一云母复相微晶玻璃的微观组织研究”, 金属学报ACTA M ETALLURGICA SINICA , 39 [2] 145-149 (2003).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw