進階搜尋


下載電子全文  
系統識別號 U0026-2005201312410100
論文名稱(中文) 操作彈性分析應用上關鍵議題之研究
論文名稱(英文) Studies on Critical Implementation Issues in Flexibility Analysis
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 郭文生
研究生(英文) Vincentius Surya Kurnia Adi
電子信箱 vska@live.com
學號 N38977013
學位類別 博士
語文別 英文
論文頁數 163頁
口試委員 口試委員-陳誠亮
口試委員-汪上曉
口試委員-鄭西顯
口試委員-張煖
口試委員-黃世宏
口試委員-吳煒
指導教授-張珏庭
中文關鍵字 none 
英文關鍵字 azeotropic distillation  batch scheduling  differential evolution  differential quadrature  direct search  dynamic flexibility  mathematical programming model  nominal condition  operational flexibility  process design  SMDDS design  temporal flexibility. 
學科別分類
中文摘要 none
英文摘要 Every chemical process can be evaluated according to more than one performance criterion. A good design should be not only cost optimal but also operable in a realistic environment. For the latter purpose, various operational properties of a given process, e.g., flexibility, controllability, reliability, and safety, have been taken into consideration in the past. The present study is performed mainly to address critical issues in implementing flexibility analysis.
A motivational example is first presented in this thesis to justify the need to analyze the impacts of uncertainties in process designs. By addressing both flowsheeting and scheduling issues, a deterministic approach is adopted in this example to design batch azeotropic distillation processes for the homogeneous ternary and quaternary systems. Since the variations in feed quality and operating conditions (e.g., pressure, temperature, etc.) are not considered in the synthesis strategies, the resulting networks may not always be operable if the design parameters deviate from their nominal values. These concerns can be addressed in rigorous flexibility analyses detailed later in the thesis.
Flexibility index (FI) is a quantitative measure of the feasible region in the space of the uncertain parameters. More specifically, FI corresponds to the maximum allowable deviation of the uncertain parameters from their nominal values, by which feasible operation can be guaranteed with the proper manipulation of the control variables. Two previously unsolved problems in flexibility analysis are discussed in this thesis: (1) identification of the optimal nominal parameter values, and (2) formulation of a generic model for computing the temporal flexibility index.
A solution strategy is developed in this work to optimally stipulate the nominal operating conditions of an existing process for maximum flexibility. The conventional flexibility index model is used to evaluate system resiliency based on fixed nominal conditions, while a direct search method (differential evolution) is performed accordingly to identify the best candidates. The impacts of nominal settings and the effectiveness of the proposed optimization approach are demonstrated in the given examples.
On the other hand, the cumulative effects of temporary disturbances in finite time intervals are also analyzed in this work so as to avoid serious consequences in realistic operations. In particular, the temporal flexibility concept is defined to address this issue mathematically. The optimization program used for evaluating the corresponding performance measure is built on the basis of a dynamic system model, which usually consists of a set of differential-algebraic equations (DAEs). To simplify numerical calculations, the differential quadrature (DQ) is utilized to approximate these DAEs with equality constraints. It can be observed from the examples provided in the thesis that this approach is convenient and effective.
Finally, a realistic solar driven membrane distillation desalination system (SMDDS) is presented as a further example to show the usefulness of temporal flexibility index. By assessing operational flexibilities of alternative candidates, the most appropriate design can be identified systematically and it is clearly demonstrated that the proposed approach is suitable for addressing various operational issues in SMDDS design.
論文目次 Abstract i
Acknowledgement iii
Contents v
List of Tables ix
List of Figures xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Steady-State Flexibility Analysis 3
1.2.2 Dynamic Flexibility Analysis 5
1.2.3 Differential Evolution 7
1.2.4 Differential Quadrature 8
1.3 Research Objectives 9
1.4 Thesis Structure 9
Chapter 2 Batch Azeotropic Distillation Network Synthesis 11
2.1 Problem Description 11
2.2 System Classification 15
2.2.1 Lumped Materials in Ternary Systems 16
2.2.2 Lumped Materials in Quaternary Systems 20
2.3 Identification of Plausible Operations 26
2.4 Synthesis of STN Structure 34
2.5 Specification of Material Balance Constraints 39
2.5.1 Representations of Lumped Materials 39
2.5.2 Descriptions of Feasible Operations 42
2.5.2.1 Mixing Operations 42
2.5.2.2 Distillation Operations 43
2.5.2.3 Objective Function 44
2.6 Generation of Production Schedules 47
2.7 Case Studies 48
2.7.1 Generation of Short-term Schedules by Assuming That
Dedicated Units are Available and That There are No
Constraints Concerning Storage Capacities and Product
Demands - Base Case 49
2.7.2 Generation of Short-term Schedules by Considering
Equipment-Sharing Opportunities Without Storage and
Demand Constraints 54
2.7.2.1 Sharing Mixers - Case 1 54
2.7.2.2 Sharing Distillers - Case 2 56
2.7.2.3 Generation of Cyclic Schedules - Case 3 59
2.8 Summary 68
Chapter 3 Flexibility Index Models 70
3.1 Steady-State Flexibility Index 70
3.2 Available Solution Strategies 75
3.2.1 Vertex Method 75
3.2.2 Active Set Method 77
3.3 Dynamic Flexibility Index 77
3.4 Application Example – Water Using Network 80
Chapter 4 A Two-Tier Search Strategy to Identify Nominal
Operating Conditions for Maximum Flexibility 85
4.1 Research Justifications 85
4.2 Problem Statement 87
4.3 Differential Evolution Algorithm and Tuning Parameters 89
4.4 Two-Tier Search Strategy 91
4.5 Application Examples 93
4.5.1 Example 1: Dryer Control Problem 94
4.5.2 Example 2: Water Network Problem 99
4.6 Summary 105
Chapter 5 A Mathematical Programming Formulation for
Temporal Flexibility Analysis 107
5.1 Temporal Flexibility Concept 108
5.2 A Simple Example 111
5.3 A More Complex Example 117
5.4 Summary 124
Chapter 6 Flexible SMDDS Designs 125
6.1 The SMDDS Design Problem 125
6.2 Simplified Mathematical Models 128
6.3 Case Studies 133
6.4 Summary 146
Chapter 7 Conclusions and Future Works 147
7.1 Conclusions 147
7.2 Future Works 148
Bibliography 150
Autobiography 162
參考文獻 Aziz, N.; Mujtaba, I. M. Optimal Operation Policies in Batch Reactors. Chem. Eng. J., 85, 313, 2002.
Bahri, P. A.; Bandoni, J. A.; Romagnoli, J. A. Integrated Flexibility and Controllability Analysis in Design of Chemical Processes. AIChE J., 43, 997, 1997.
Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Performance Evaluation of the “Large SMADES” Autonomous Desalination Solar-Driven Membrane Distillation Plant in Aqaba, Jordan. Desalination, 217, 17, 2007.
Banerjee, I.; Ierapetritou, M. G. Design Optimization under Parameter Uncertainty for General Black-Box Models. Ind. Eng. Chem. Res., 41, 6687, 2002.
Banerjee, I.; Ierapetritou, M. G. Feasibility Evaluation of Nonconvex Systems Using Shape Reconstruction Techniques. Ind. Eng. Chem. Res., 44, 3638, 2005.
Banerjee, I.; Ierapetritou, M. G. Parametric Process Synthesis for General Nonlinear Models. Comp. Chem. Eng., 27, 1499, 2003.
Banerjee, I.; Pal, S.; Maiti, S. Computationally Efficient Black-Box Modeling for Feasibility Analysis. Comp. Chem. Eng., 34, 1515, 2010.
Bansal, V.; Perkins, J. D.; Pistikopoulos, E. N. Flexibility Analysis and Design of Dynamic Processes with Stochastic Parameters. Comput. Chem. Eng., 22, S817, 1998.
Bansal, V.; Perkins, J. D.; Pistikopoulos, E. N. Flexibility Analysis and Design of Linear Systems by Parametric Programming. AIChE J., 46, 335, 2000.
Bansal, V.; Perkins, J. D.; Pistikopoulos, E. N. Flexibility Analysis and Design Using a Parametric Programming Framework. AIChE J., 48, 2851, 2002.
Bauer, M. H.; Stichlmair, J. Design and Economic Optimization of Azeotropic Distillation Processes Using Mixed-Integer Nonlinear Programming. Comput. Chem. Eng., 22, 1271, 1998.
Bellman, R. E.; Casti, J. Differential Quadrature and Long-Term Integration. J. Math. Anal. Appl., 34, 235, 1971.
Bellman, R. E.; Kashef, B. G.; Casti, J. Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations. J. Comput. Phys., 10, 40, 1972.
Ben Bacha, H.; Dammak, T.; Ben Abdalah, A. A.; Maalej, A. Y.; Ben Dhia, H. Desalination Unit Coupled with Solar Collectors and Storage Tank: Modeling and Simulation. Desalination, 206, 341, 2007.
Biegler, L. T. Solution of Dynamic Optimization Problems by Successive Quadratic Programming and Orthogonal Collocation. Comput. Chem. Eng., 8, 243, 1984.
Biegler, L. T.; Grossmann I. E.; Westerberg, A. W. Systematic Methods of Chemical Process Design. Prentice-Hall, Englewood Cliffs, New Jersey, 690, 1997.
Boukouvala, F.; Ierapetritou, M. G. Feasibility Analysis of Black-Box Processes Using an Adaptive Sampling Kriging-Based Method. Comput. Chem. Eng., 36, 358, 2012.
Brengel, D. D.; Seider, W. D. Coordinated Design and Control Optimization of Nonlinear Processes. Comput. Chem. Eng., 16, 861, 1992.
Bui, V. A.; Vu, L. T. T.; Nguyen, M. H. Simulation and Optimization of Direct Contact Membrane Distillation for Energy Efficiency. Desalination, 259, 29, 2010.
Cabassud C.; Wirth, D. Membrane Distillation for Water Desalination: How to Choose an Appropriate Membrane? Desalination, 157, 307, 2003.
Chacon–Mondragon, O. L.; Himmelblau, D. M. Integration of Flexibility and Control in Process Design. Comput. Chem. Eng., 20, 447, 1996.
Chang, C. T.; Li, B. H.; Liou, C. W. Development of a Generalized Mixed Integer Nonlinear Programming Model for Assessing and Improving the Operational Flexibility of Water Network Designs, Ind. Eng. Chem. Res., 48, 3496, 2009.
Chang, C. T.; Tsai, C. S.; Lin, T. T. Modified Differential Quadratures and Their Applications. Chem. Eng. Commun., 123, 135, 1993.
Chang, H.; Lyu, S. G.; Tsai, C. M.; Chen, Y. H.; Cheng, T. W.; Chou, Y. H. Experimental and Simulation Study of a Solar Thermal Driven Membrane Distillation Desalination Process. Desalination, 286, 400, 2012.
Chang, H.; Wang, G. B.; Chen, Y. H.; Li, C. C.; Chang, C. L. Modeling and Optimization af a Solar Driven Membrane Distillation Desalination System. Renew. Energ., 35, 2714, 2010.
Civan F.; Sliepcevich, C. M. Differential Quadrature for Multidimensional Problems. J. Math. Anal.Appl., 101, 423, 1984.
Cuthrell, J. E.; Biegler, L. T. On the Optimization of Differential Algebraic Process Systems. AIChE J., 33, 1257, 1987.
Dimitriadis, V. D.; Pistikopoulos, E. N. Flexibility Analysis of Dynamic Systems. Ind. Eng. Chem. Res., 34, 4451, 1995.
Dimitriadis, V. D.; Shah, N.; Pantelides, C. C. Modeling and Safety Verification of Discrete/Continuous Processing Systems. AIChE J., 43, 1041, 1997.
Doherty, M. F.; Malone, M. F. Conceptual Design of Distillation Systems. McGraw-Hill, New York, 2001.
Eberhart, R. C.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. Proc. of the Sixth Int’l Sym. on Micr. Mach. and Hum. Sci., 39, 1995.
Feng, G.; Fan, L. T.; Friedler, F. Synthesizing Alternative Sequences via a P-Graph-Based Approach in Azeotropic Distillation Systems. Waste Manage., 20, 639, 2000.
Feng, G.; Fan, L. T.; Friedler F.; Seib, P. A. Identifying Operating Units for the Design and Synthesis of Azeotropic-Distillation Systems. Ind. Eng. Chem. Res., 39, 175, 2000.
Feng, G.; Fan, L. T.; Seib, P. A.; Bertok, B.; Kalotai, L.; Friedler, F. Graph-Theoretic Method for the Algorithmic Synthesis of Azeotropic-Distillation Systems. Ind. Eng. Chem. Res., 42, 3602, 2003.
Ferris, M. C. MATLAB and GAMS: Interfacing Optimization and Visualization Software. Computer Sciences Department, University of Wisconsin-Madison, Retrieved May 10, 2013, from http://www.cs.wisc.edu/math-prog/matlab.html, 2005.
Fidkowski, Z. T.; Malone, M. F.; Doherty, M. F. Computing Azeotropes in Multicomponent Mixtures. Comput. Chem. Eng., 17, 1141, 1993.
Fien, G-J. A. F.; Liu, Y.A. Heuristic Synthesis and Shortcut Design of Separation Processes Using Residue Curve Maps: A Review. Ind. Eng. Chem. Res., 33, 2505, 1994.
Floudas, C. A.; Gunus, Z. H.; Ierapetritou, M. G. Global Optimization in Design under Uncertainty: Feasibility Test and Flexibility Index Problems. Ind. Eng. Chem. Res., 40, 4267, 2010.
Floudas, C. A.; Lin, X. Continuous-Time Versus Discrete-Time Approaches for Scheduling of Chemical Processes: A Review. Comput. Chem. Eng., 28, 2109, 2004.
Friedler, F.; Tarjan, K.; Huang, Y. W.; Fan, L. T. Graph-Theoretic Approach to Process Synthesis: Axioms and Theorems. Chem. Eng. Sci., 47, 1973, 1992.
Friedler, F.; Tarjan, K.; Huang, Y. W.; Fan, L.T. Graph-Theoretic Approach to Process Synthesis: Polynomial Algorithm for Maximal Structure Generation. Comput. Chem. Eng., 17, 929, 1993.
Friedler, F., Varga, J. B., and Fan, L. T. Decision-Mapping: A Tool for Consistent and Complete Decisions in Process Synthesis. Chem. Eng. Sci., 50, 1755, 1995.
Gálvez, J. B.; García-Rodríguez, L.; Martín-Mateos, I. Seawater Desalination by an Innovative Solar-Powered Membrane Distillation System: The MEDESOL Project. Desalination, 246, 567, 2009.
Georgiadis, M. C.; Pistikopoulos, E. N. An Integrated Framework for Robust and Flexible Process Systems. Ind. Eng. Chem. Res., 38, 133, 1999.
Goldberg, D. E. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, 1989.
Grossmann, I. E.; Floudas, C. A. Active Constraint Strategy for Flexibility Analysis in Chemical Process. Comput. Chem. Eng., 11, 675, 1987.
Grossmann, I. E.; Halemane, K. P. Decomposition Strategy for Designing Flexible Chemical Plants. AIChE J., 28, 686, 1982.
Grossmann, I. E.; Viswanathan, J.; Vecchietti, A.; Raman, R.; Kalvelagen. E. GAMS/DICOPT: A Discrete Continuous Optimization Package. GAMS Corporation, Inc., 2003.
Guillen-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcon, D. C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental Analysis of an Air Gap Membrane Distillation Solar Desalination Pilot System. J. Membr. Sci., 379, 386, 2011.
Halemane, K. P.; Grossmann, I. E. Optimal Process Design under Uncertainty. AIChE J., 29, 425, 1983.
Holland, J. H. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 1. Multipurpose Batch Processes. Ind. Eng. Chem. Res., 37, 4341, 1998.
Ierapetritou, M. G.; Floudas, C. A. Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Multipurpose/Multiproduct Continuous Processes. Ind. Eng. Chem. Res., 37, 4360, 1998.
Kennedy, J.; Eberhart, R. C. Particle Swarm Optimization. Proc. of IEEE Int’l Con. on Neu. Net., 4, 1942, 1995.
Kim, J.; Moon, I. Synthesis of Safe Operating Procedure for Multi-Purpose Batch Processes Using SMV. Comput. Chem. Eng., 24, 385, 2000.
Kondili, E.; Pantelides, C. C.; Sargent, R. W. H. A General Algorithm for Short-Term Scheduling of Batch Operations - I. MILP Formulation. Comput. Chem. Eng., 17, 211, 1993.
Koschikowski, J.; Wieghaus, M.; Rommel, M. Solar Thermal-Driven Desalination Plants Based on Membrane Distillation. Desalination, 156, 295, 2003.
Lima F. V.; Georgakis C. Design of Output Constraints for Model-Based Non-Square Controllers Using Interval Operability. J. Process Contr., 18, 610, 2008.
Lima, F. V.; Georgakis C.; Smith, J. F.; Schnelle, P. D.; Vinson D. R. Operability-Based Determination of Feasible Control Constraints for Several High-Dimensional Nonsquare Industrial Processes. AIChE J., 56, 1249, 2010.
Lima, F. V.; Jia, Z.; Ierapetritou, M.; Georgakis, C. Similarities and Differences Between the Concepts of Operability and Flexibility: The Steady-State Case, AIChE J., 56, 702, 2010.
Liou, C. W. The Impacts of Mixers and Buffer Tanks on the Operational Flexibility of Water Usage and Treatment Networks, MS Thesis, Chemical Engineering Department, National Cheng Kung University, Taiwan, 2006.
Liu, J.; Lampinen, J. On Setting the Control Parameter of the Differential Evolution Method. Proc. of the 8th Int’l Con. on Soft Comp. (MENDEL). Brno, Czech Republic, 11, 2002.
Majozi, T. Heat Integration of Multipurpose Batch Plants Using a Continuous-Time Formulation, Appl. Therm. Eng., 26, 1369, 2006.
Malcom, A.; Polan, J.; Zhang, L.; Ogunnaike, B. A.; Linninger, A. A. Integrating Systems Design and Control Using Dynamic Flexibility Analysis, AIChE J., 53, 2048, 2007.
Maravelias, C. T.; Grossmann, I. E. A New General Continuous-Time State Task Network Formulation for the Short Term Scheduling of Multi-Purpose Batch Plants. Ind. Eng. Chem. Res., 42, 3056, 2003.
Meindersma, G. W.; Guijt, C. M.; de Haan, A. B. Desalination and Water Recycling by Air Gap Membrane Distillation. Desalination., 187, 291, 2006.
Mohideen, M. J.; Perkins, J. D.; Pistikopoulos, E. N. Optimal Design Dynamic Systems under Uncertainty. AIChE J., 42, 2251, 1996.
Ostrovski, G. M.; Achenie, L. E. K.; Wang, Y. P.; Volin, Y. M. A New Algorithm for Computing Process Flexibility. Comput. Chem. Eng., 39, 2368, 2001.
Ostrovski, G. M.; Volin, Y. M. Flexibility Analysis of Chemical Process: Selected Global Optimization Sub–Problems. Optim. Eng., 3, 31, 2002.
Pantelides, C.C. Unified Frameworks for the Optimal Process Planning and Scheduling. (Eds. Rippin, D. W. T. and Hale, J.) Proc. 2nd Conf. on Foundations of Computer Aided Process Operations, 253, 1994.
Papageorgaki, S.; Reklaitis, G. V. Optimal Design of Multipurpose Batch Plants - I. Problem Formulation. Ind. Eng. Chem. Res., 29, 2054, 1990.
Pedersen M. E. H. Tuning and Simplifying Heuristical Optimization, Ph.D. Thesis, School of Engineering Sciences, University of Southampton, England, 2008.
Petracci, N. C.; Hoch, P. M.; Cliche, A. M. Flexibility Analysis of an Ethylene Plant. Comput. Chem. Eng., 20, S443, 1996.
Pham, H. N.; Doherty, M. F. Design and Synthesis of Heterogeneous Azeotropic Distillations - III. Column Sequence. Chem. Eng. Sci., 45, 1845, 1990.
Pistikopoulos, E. N.; Grossmann, I. E. Evaluation and Redesign for Improving Flexibility in Linear Systems with Infeasible Nominal Conditions. Comput. Chem. Eng., 12, 841, 1988.
Pistikopoulos, E. N.; Grossmann, I. E. Optimal Retrofit Design for Improving Process Flexibility in Linear Systems. Comput. Chem. Eng., 12, 719, 1988.
Pistikopoulos, E. N.; Grossmann, I. E. Optimal Retrofit Design for Improving Process Flexibility in Nonlinear Systems–I: Fixed Degree of Flexibility. Comput. Chem. Eng., 13, 1003, 1989.
Pistikopoulos, E. N.; Grossmann, I. E. Optimal Retrofit Design for Improving Process Flexibility in Nonlinear Systems–II: Optimal Level of Flexibility. Comput. Chem. Eng., 13, 1087, 1989.
Pistikopoulos, E. N.; Mazzuchi T. A. A Novel Flexibility Analysis Approach for Processes with Stochastic Parameters. Comput. Chem. Eng., 14, 991, 1990.
Pistikopoulos, E. N.; Mazzuchi, T. A.; Van Rijn, C. F. H. Flexibility, Reliability, and Availability Analysis of Manufacturing Processes: A Unified Approach. Process Tech. Proceed. Comput. Appl. Chem. Eng. (COMCHEM 90), Bussemaker, H. T. and Ledema, P. D., eds., Elsevier, Amsterdam., 233, 1990.
Quan, J. R.; Chang, C. T. New Insights in Solving Distributed System Equations by The Quadrature Methods – I. Comput. Chem. Eng., 13, 779, 1989.
Quan, J. R.; Chang, C. T. New Insights in Solving Distributed System Equations by The Quadrature Methods – II. Comput. Chem. Eng., 13, 1017, 1989.
Raman, R.; Grossmann, I. E. Relation Between MILP Modeling and Logical Inference for Chemical Process Synthesis. Comput. Chem. Eng., 15, 73, 1991.
Raman, R.; Grossmann, I. E. Symbolic Integration of Logic in Mixed-Integer Linear Programming Techniques for Process Synthesis. Comput. Chem. Eng., 13, 909, 1993.
Riyanto, E. A Heuristical Revamp Strategy to Improve Operational Flexibility of Existing Water Networks. MS Thesis, National Cheng Kung University, Tainan, Taiwan, ROC, 2009.
Riyanto, E.; Chang, C. T. A Heuristic Revamp Strategy to Improve Operational Flexibility of Water Networks Based on Active Constraints, Chem. Eng. Sci., 65, 2758, 2010.
Sahinidis, N. V.; Tawarmalani, M. GAMS/BARON 5.0: Global Optimization of Mixed-Integer Nonlinear Programs. GAMS Corporation, Inc., 2003.
Shah, N.; Pantelides, C. C.; Sargent, R.W.H. A General Algorithm for Short-Term Scheduling of Batch Operations - II. Computational Issues. Comput. Chem. Eng., 17, 229, 1993.
Shi, Y.; Eberhart, R. C. A Modified Particle Swarm Optimizer. Proc. of IEEE Int’l Con. on Evo. Comp., 69, 1998.
Shu, C. Differential Quadrature and Its Applications in Engineering. Springer-Verlag, London, 340, 2000.
Soroush, M.; Kravaris, C. Optimal Design and Operation of Batch Reactors. 1. Theoretical Framework. Ind. Eng. Chem. Res., 32, 866, 1993.
Soroush, M.; Kravaris, C. Optimal Design and Operation of Batch Reactors. 2. A Case Study. Ind. Eng. Chem. Res., 32, 882, 1993.
Stichlmair, J. G.; Fair, J. R.; Bravo, J. L. Separation of Azeotropic Mixtures via Enhanced Distillation. Chem. Eng. Progr., 85, 63, 1989.
Stichlmair, J. G.; Herguijuela, J. R. Separation Regions and Processes of Zeotropic and Azeotropic Ternary Distillation. AIChE J., 38, 1523, 1992.
Storn, R. On the Usage of Differential Evolution for Function Optimization. Bie. Con. of the NAFIPS, 519, 1996.
Storn, R.; Price, K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. Global Optim., 11, 341, 1997.
Straub, D. A.; Grossmann, I. E. Design Optimization of Stochastic Flexibility. Comput. Chem. Eng., 17, 339, 1993.
Straub, D. A.; Grossmann, I. E. Evaluation and Optimization of Stochastic Flexibility in Multiproduct Batch Plants. Comput. Chem. Eng., 16, 69, 1992.
Straub, D. A.; Grossmann, I. E. Integrated Stochastic Metric of Flexibility for Systems with Discrete State and Continuous Parameter Uncertainties. Comput. Chem. Eng., 14, 967, 1990.
Swaney, R. E.; Grossmann, I. E. An Index for Operational Flexibility in Chemical Process Design Part I: Formulation and Theory. AIChE J., 31, 621, 1985.
Swaney, R. E.; Grossmann, I. E. An Index for Operational Flexibility in Chemical Process Design Part II: Computational Algorithms. AIChE J., 31, 631, 1985.
Taiwanese Government Consuming Water Statistics Database Annual Reports. Retrieved May 10, 2013, from http://wuss.wra.gov.tw/annualreports/ 20120003九十九年生活用水量統計.pdf, 2010.
The Mathworks, Inc. Simulink® Getting Started Guide. Retrieved May 10, 2013, from http://www.mathworks.com/help/pdf_doc/simulink/sl_gs.pdf, 2012.
Thong, D. Y.-C.; Jobson, M. Multicomponent Homogeneous Azeotropic Distillation 1. Assessing Product Feasibility. Chem. Eng. Sci., 56, 4369, 2001.
Thong, D. Y.-C.; Jobson, M. Multicomponent Homogeneous Azeotropic Distillation 2. Column Design. Chem. Eng. Sci., 56, 4393, 2001.
Thong, D. Y.-C.; Jobson, M. Multicomponent Homogeneous Azeotropic Distillation 3. Column Sequence Synthesis. Chem. Eng. Sci., 56, 4417, 2001.
Thong, D. Y.-C.; Liu, G. L.; Jobson, M.; Smith, R. Synthesis of Distillation Sequences for Separating Multicomponent Azeotropic Mixtures. Chem. Eng. Process., 43, 239, 2004.
Varvarezos, D. K.; Grossmann, I. E.; Biegler, L. T. A Sensitivity Based Approach for Flexibility Analysis and Design of Linear Process Systems. Comput. Chem. Eng., 19, 1301, 1995.
Volin, Y. M.; Ostrovski, G. M. Flexibility Analysis of Complex Technical Systems under Uncertainty. Automat. Rem. Contr., 63, 1123, 2002.
Wahnschafft, O. M.; Koehler, J. W.; Blass, E.; Westerberg, A. W. The Product Composition Regions of Single-Feed Azeotropic Distillation Columns. Ind. Eng. Chem. Res., 31, 2345, 1992.
Walsh, S.; Perkins, J. D. Application of Integrated Process and Control System Design to Waste Water Neutralization. Comput. Chem. Eng., 18, S183, 1994.
White, V.; Perkins, J. D.; Espie, D. M. Switchability Analysis. Comput. Chem. Eng., 20, 469, 1996.
Wu, D.; Ierapetritou, M. Cyclic Short-Term Scheduling of Multiproduct Batch Plants Using Continuous-Time Representation. Comput. Chem. Eng., 28, 2271, 2004.
Zaharie, D. Critical Values for the Control Parameters of Differential Evolution Algorithms. Proc. of the 8th Int’l Con. on Soft Comp. (MENDEL). Brno, Czech Republic, 62, 2002.
Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities. Part A. General Formulation and Some Solution Approaches for the Solution. Comput. Chem. Eng., 20, 897, 1996.
Zhang, X.; Sargent, R. W. H. The Optimal Operation of Mixed Production Facilities — Extensions and Improvements. Comput. Chem. Eng., 22, 1287, 1998.
Zhou, H.; Li, X. X.; Qian,Y.; Chen, Y.; Kraslawski, A. Optimizing the Initial Conditions to Improve the Dynamic Flexibility of Batch Processes, Ind. Eng. Chem. Res., 48, 6321, 2009.
Zong, Z.; Lam, K. Y. A Localized Differential Quadrature Method and Its Application to the 2D Wave Equation. Comput. Mech., 29, 382, 2002.
Zong, Z.; Zhang, Y. Y. Advanced Differential Quadrature Methods. Chapman and Hall/CRC, Boca Raton, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-05-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-05-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw