進階搜尋


下載電子全文  
系統識別號 U0026-2003201522465300
論文名稱(中文) 腫瘤浸潤巨噬細胞與癌細胞間的交互作用及其對胰臟癌幹細胞特性的影響
論文名稱(英文) The mutual interaction between tumor associated macrophages and cancer cells and its impact on pancreatic cancer stemness
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 侯雅琴
研究生(英文) Ya-Chin Hou
學號 S58994128
學位類別 博士
語文別 英文
論文頁數 117頁
口試委員 指導教授-沈延盛
召集委員-賴明德
口試委員-湯銘哲
口試委員-謝達斌
口試委員-陳立宗
口試委員-洪文俊
中文關鍵字 胰臟癌  癌幹細胞  腫瘤微環境  腫瘤浸潤巨噬細胞  巨噬细胞移動抑制因子  介白素8  趨化激素5 
英文關鍵字 Pancreatic cancer  Cancer stem cells  Tumor microenvironment  Tumor-associated macrophages  MIF  IL-8  CCL5 
學科別分類
中文摘要 胰臟癌在全世界癌症死亡排名第四位,每年新增病例數目和死亡病例數目幾乎相等,且在台灣發生率正逐年增加。手術切除腫瘤是目前主要的治療方法,但約有90%的患者因診斷較晚已合併遠端轉移、或因嚴重發炎導致組織固化而無法接受手術根除治療,這些患者的五年存活率低於5%,顯示現有疾病的診斷與治療效果有限。研究證實腫瘤相關巨噬細胞的浸潤和癌幹細胞的參與會導致癌細胞增殖、侵犯和轉移,與病患的存活率降低、易復發及喪失對原本有效藥物的反應等結果有關,但目前兩者在胰臟癌所扮演的角色與作用機制尚未清楚。因此我們想要研究胰臟癌細胞與腫瘤浸潤巨噬細胞間的交互作用為何及其對胰臟癌幹細胞活性之影響。首先我們以包含96個胰臟癌病人的組織微陣列進行螢光染色發現腫瘤浸潤巨噬細胞標記C204的表現量和胰臟癌幹細胞標記CD44和CD133呈正相關,且同時高表現CD204和CD44/CD133的病人之存活率是所有組別中最差的,顯示腫瘤浸潤巨噬細胞和胰臟癌幹細胞的存在有密切關係。為了探討兩者間的作用關係,我們將癌細胞與單核球細胞進行共同培養以模擬腫瘤微環境,結果發現胰臟癌細胞中具有癌幹細胞特性的細胞族群會增加,且單核球細胞也因胰臟癌細胞的刺激而分化成腫瘤浸潤巨噬細胞,將胰臟癌幹細胞接種至免疫缺陷老鼠,結果顯示同時接種胰臟癌幹細胞和腫瘤浸潤巨噬細胞的組別會較單獨接種胰臟癌幹細胞的組別形成較大的腫瘤,推論腫瘤浸潤巨噬細胞的存在可以促進胰臟癌幹細胞活性,進一步透過RNA microarray和cytokine protein array的分析,我們認為MIF、IL-8及CCL5可能參與胰臟癌細胞與腫瘤浸潤巨噬細胞間的交互作用,利用MetaCore、即時聚合酶鏈式反應和西方墨點法的結果確認癌細胞會分泌MIF使單核球活化成腫瘤浸潤巨噬細胞,並誘導腫瘤浸潤巨噬細胞分泌IL-8和CCL5去調控胰臟癌幹細胞活性,此一效應可被NF-κB抑制劑所抑制,利用藥物或siRNA抑制MIF的活性可有效減少IL-8和CCL5的產生,進而減少胰臟癌幹細胞和腫瘤浸潤巨噬細胞的族群,此結果也在動物模式上得到驗證,最後分析組織微陣列和病人血清中MIF、IL-8及CCL5的表現量,顯示這3個分子之間呈正相關的關係且與病人預後有關。總結我們的研究發現,腫瘤浸潤巨噬細胞對調控胰臟癌幹細胞扮演一個重要的角色,合併抑制MIF和腫瘤浸潤巨噬細胞的作用能提供治療胰臟癌可針對的標靶。
英文摘要 Pancreatic cancer (PC) is the fourth commonest cause of cancer-related mortality across the world, with incidence equaling mortality. The incidence of PC is gradually increased in Taiwan. Surgery is the primary method to treat patients with PC, but only 10% of the diagnosed patients can be treated by surgical resection. These unresectable cases were divided into two groups on metastasis or locally advanced PC. The five-year survival rate is less than 5%, suggesting the limited in diagnosis and treatment of PC. Recently reports illustrate tumor associated macrophages (TAMs) infiltration in tumor tissue and the existence of cancer stem cells (CSCs) may promote cancer cells proliferation, invasion, and metastasis. Both TAMs and CSCs were associated with poor prognosis. However, the interaction between CSCs and TAMs and the way by which TAMs sustain CSCs mediates PC progression remains to be explored. In this study, we found that CD204-positive TAMs expression related with CD44 and CD133-positive CSCs in tissue microarray containing 96 clinical PC specimens, and coexpression of CSCs and TAMs predicted poor prognosis. Furthermore, we established a coculture system of pancreatic cancer cells and monocytes to monitor how the interplay between CSCs and TAMs accelerates tumor development and progression. The results showed that cancer cells induced TAMs activation via coculture. TAMs promoted cancer stemness and tumorigenesis in vitro and in vivo. On the basis of RNA microarray and cytokine array data, we proposed the interplay between CSCs and TAMs was mediated by secreting MIF, IL-8, and CCL5. We also verified these results by MetaCore, quantitative real-time PCR, and Western blot analysis, and found that CSC growth was regulated in a paracrine manner by TAMs through MIF/IL-8/CCL5 axis; in particular, the inhibition of MIF signaling using a specific inhibitor could suppress cancer stemness and tumour growth. Importantly, the induction of MIF, IL-8, or CCL5 in response to coculture was abolished by NF-κB inhibitor BAY 11-7082. Finally, we confirmed these findings in a cohort of 96 PC patients and determined the clinical significance of MIF/IL-8/CCL5 paracrine signaling on PC progression. Taken together, our results suggest that tumor microenvironment TAMs may play an important role in maintaining cancer stemness. Simultaneous targeting cancer-derived MIF and TAMs is a new therapeutic strategy for PC.
論文目次 中文摘要....I
Abstract....III
致謝....V
Contents....VI
Abbreviation list.....X
Chapter 1:Introduction...1
1-1 Pancreatic cancer...2
1-2 Pancreatic cancer stem cells...2
1-3 Tumor microenvironment in pancreatic cancer...4
1-4 Tumor associated macrophages...5
1-5 Role of TAMs in pancreatic cancer progression...7
1-6 Interplay between CSCs and TAMs...10
1-7 Macrophage migration inhibitory factor...13
1-8 IL-8....14
1-9 CCL5.....16
1-10 Rationales.....18
1-11 Specific aims...19
Chapter 2:Materials and Methods....20
2-1 Patients and TMA construction....21
2-2 Primary cell culture...21
2-3 Monocyte isolation from human peripheral blood..21
2-4 Cell culture....22
2-5 Sphere formation and CSCs harvest..22
2-6 Lentiviral transduction and stable cell line generation...23
2-7 Flow cytometric analysis and cell sorting (FACS) ..23
2-8 Methyl-thiazol-tetrazolium (MTT) assay..23
2-9 Adhesion assay....24
2-10 Phagocytosis assay....24
2-11 RNA extraction, reverse transcription, and quantitative real-time PCR..24
2-12 Cell lysis and Western blot analysis...25
2-13 Cytokine array...25
2-14 ELISA....26
2-15 Immunofluorescence staining and measurement..26
2-16 Tumor formation in NOD/SCID or C57BL/6 mice and drug treatment..27
2-17 Statistics.....28
Chapter 3:Results....29
3-1 Clinicopathological characteristics and outcomes...30
3-2 CD44+/CD133+ CSCs or CD204+ TAMs expression in normal and cancer are..30
3-3 CD44+/CD133+ CSCs or CD204+ TAMs expression versus clinicopathological
characteristics...31
3-4 Clinicopathological features and expression of CD44+/CD133+ CSCs or CD204+
TAMs versus survival....31
3-5 Coexpression of CD44/CD133 and CD204 associated with poor outcomes in PC..32
3-6 CSCs and TAMs are co-present in pancreatic tumors...33
3-7 Coculture of monocytes with pancreatic cancer cells leads to TAMs activation.33
3-8 CD44+CD133+ cells have high CSCs capacity..34
3-9 TAMs support pancreatic CSCs maintenance and promote tumorigenicity.35
3-10 A paracrine network mediates interaction between pancreatic cancer cells and
TAMs....35
3-11 MIF contribute to TAMs activation..36
3-12 MIF trafficking and secretion regulate a paracrine signaling to affect CSCs
subsets.....37
3-13 IL-8 and CCL5 cooperate to improve CSCs activities...38
3-14 MIF signaling is a target to suppress pancreatic cancer progression.39
3-15 MIF/IL-8/CCL5 levels correlate with poor prognosis.39
Chapter 4:Discussion and Conclusion....41
References.....49
Tables and Figures....68
Table 1. Clinicopathological parameters and clinical outcome (n=96) ..68
Table 2. Clinicopathological parameters and expression of CD44, CD133, CD44/CD133, and CD204 (n=96) ...69
Table 3. Multivariate analysis of prognostic factors for overall and disease-free
survival...70
Table 4. Significant genes of pancreatic cancer cells after coculture with U937 cells by
microarray analysis...71
Table 5. Significant genes of U937 cells after coculture with pancreatic cancer cells by
microarray analysis...74
Figure 1. Expression of CSCs markers CD44 and CD133 in TMA and the corresponding
full sections of PC tissue. ....75
Figure 2. Expression of TAMs marker CD204 in TMA and the corresponding full
sections of PC tissue. ...77
Figure 3. The correlation between CD44+/CD133+ CSCs and CD204+ TAMs in PC.79
Figure 4. CSCs and TAMs are co-present in fresh pancreatic tumors and ascites
fluids....81
Figure 5. Pancreatic cancer cells promote TAMs activation...83
Figure 6. Functional characterizations of pancreatic cancer stem cells. ..86
Figure 7. TAMs enhance CSCs properties..88
Figure 8. Pancreatic cancer cells-monocytes crosstalk via paracrine networks mediate
TAMs activation and cancer stemness..91
Figure 9. The MIF/IL-8/CCL5 axis is involved in microenvironmental paracrine
signalling for regulating monocyte-TAMs differentiation and maintaining
cancer stemness....94
Figure 10. Depletion of MIF decreased the presence of CSCs. .97
Figure 11. Blockage of MIF signaling suppresses pancreatic cancer stemness and
tumorigenicity. ....99
Figure 12. The coexpression of MIF, IL-8, and CCL5 are correlated with pancreatic
cancer patients outcomes. ...101
Publication .....103
參考文獻 1. Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford) 2008; 10(1):58-62.
2. Ryu JK, Hong SM, Karikari CA, et al. Aberrant MicroRNA-155 Expression Is an Early Event in the Multistep Progression of Pancreatic Adenocarcinoma. Pancreatology 2010; 10(1):66-73.
3. Michl P, Gress TM. Current concepts and novel targets in advanced pancreatic cancer. Gut 2013; 62(2):317-26.
4. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. Ca-a Cancer Journal for Clinicians 2007; 57(1):43-66.
5. Bosetti C, Bertuccio P, Negri E, et al. Pancreatic cancer: Overview of descriptive epidemiology. Molecular Carcinogenesis 2012; 51(1):3-13.
6. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nature Reviews Gastroenterology & Hepatology 2009; 6(12):699-708.
7. Ryan DP, Hong TS, Bardeesy N. Pancreatic Adenocarcinoma. New England Journal of Medicine 2014; 371(11):1039-1049.
8. Pour PM. The Silent Killer. International Journal of Pancreatology 1991; 10(2):103-104.
9. Bilimoria KY, Bentrem DJ, Ko CY, et al. Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer 2007; 110(4):738-44.
10. Abel EV, Simeone DM. Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 2013; 144(6):1241-8.
11. Clevers H. The cancer stem cell: premises, promises and challenges. Nature Medicine 2011; 17(3):313-9.
12. Cetin I, Topcul M. Cancer stem cells in oncology. J BUON 2012; 17(4):644-8.
13. Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 2013; 27(1):13-24.
14. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3):1030-7.
15. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1(3):313-23.
16. Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004; 101(39):14228-33.
17. Wang YH, Li F, Luo B, et al. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 2009; 56(5):371-8.
18. Zhang SN, Huang FT, Huang YJ, et al. Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells. Tumori 2010; 96(6):985-92.
19. Niess H, Camaj P, Renner A, et al. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis. Target Oncol 2014.
20. Olempska M, Eisenach PA, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 2007; 6(1):92-7.
21. Du Z, Qin R, Wei C, et al. Pancreatic cancer cells resistant to chemoradiotherapy rich in "stem-cell-like" tumor cells. Dig Dis Sci 2011; 56(3):741-50.
22. Vizio B, Mauri FA, Prati A, et al. Comparative evaluation of cancer stem cell markers in normal pancreas and pancreatic ductal adenocarcinoma. Oncol Rep 2012; 27(1):69-76.
23. Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8(2):97-106.
24. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57-70.
25. Li D, Abbruzzese JL. New strategies in pancreatic cancer: emerging epidemiologic and therapeutic concepts. Clin Cancer Res 2010; 16(17):4313-8.
26. Erkan M, Hausmann S, Michalski CW, et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 2012; 9(8):454-67.
27. Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment. Clinical Cancer Research 2012; 18(16):4266-76.
28. Garcea G, Dennison AR, Steward WP, et al. Role of inflammation in pancreatic carcinogenesis and the implications for future therapy. Pancreatology 2005; 5(6):514-29.
29. Steele CW, Jamieson NB, Evans TR, et al. Exploiting inflammation for therapeutic gain in pancreatic cancer. Br J Cancer 2013; 108(5):997-1003.
30. Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 2008; 180(4):2011-7.
31. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917):860-7.
32. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7(3):211-7.
33. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196(3):254-65.
34. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11(10):889-96.
35. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 2011; 89(4):557-63.
36. Stein M, Keshav S, Harris N, et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992; 176(1):287-92.
37. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32(5):593-604.
38. Karp CL, Murray PJ. Non-canonical alternatives: what a macrophage is 4. J Exp Med 2012; 209(3):427-31.
39. Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 2011; 9:216.
40. Piras F, Colombari R, Minerba L, et al. The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 2005; 104(6):1246-54.
41. Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011; 167(2):e211-9.
42. Klein JL, Nguyen TT, Bien-Willner GA, et al. CD163 Immunohistochemistry Is Superior to CD68 in Predicting Outcome in Classical Hodgkin Lymphoma. American Journal of Clinical Pathology 2014; 141(3):381-387.
43. Verreck FA, de Boer T, Langenberg DM, et al. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006; 79(2):285-93.
44. Pilling D, Fan T, Huang D, et al. Identification of Markers that Distinguish Monocyte-Derived Fibrocytes from Monocytes, Macrophages, and Fibroblasts. PLoS One 2009; 4(10).
45. Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 2007; 26(3-4):717-24.
46. Liu CY, Xu JY, Shi XY, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest 2013; 93(7):844-54.
47. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer 2009; 9(11):798-809.
48. Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19(1):31-44.
49. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4):253-68.
50. Choi KM, Kashyap PC, Dutta N, et al. CD206-Positive M2 Macrophages That Express Heme Oxygenase-1 Protect Against Diabetic Gastroparesis in Mice. Gastroenterology 2010; 138(7):2399-U261.
51. Solinas G, Germano G, Mantovani A, et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology 2009; 86(5):1065-1073.
52. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 2010; 11(10):889-896.
53. Wyckoff J, Wang WG, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research 2004; 64(19):7022-7029.
54. Hao NB, Lu MH, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012; 2012:948098.
55. Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Research 2013; 73(3):1128-41.
56. Cavel O, Shomron O, Shabtay A, et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Research 2012; 72(22):5733-43.
57. Schmid MC, Avraamides CJ, Foubert P, et al. Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res 2011; 71(22):6965-75.
58. Schmid MC, Avraamides CJ, Dippold HC, et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011; 19(6):715-27.
59. Tugues S, Honjo S, Konig C, et al. Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization. Cancer Res 2012; 72(8):1953-63.
60. Beatty GL, Chiorean EG, Fishman MP, et al. CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans. Science 2011; 331(6024):1612-1616.
61. Arnold SA, Rivera LB, Miller AF, et al. Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Disease Models & Mechanisms 2010; 3(1-2):57-72.
62. Kimsey TF, Campbell AS, Albo D, et al. Co-localization of macrophage inflammatory protein-3alpha (Mip-3alpha) and its receptor, CCR6, promotes pancreatic cancer cell invasion. Cancer J 2004; 10(6):374-80.
63. Campbell AS, Albo D, Kimsey TF, et al. Macrophage inflammatory protein-3alpha promotes pancreatic cancer cell invasion. J Surg Res 2005; 123(1):96-101.
64. Mazzieri R, Pucci F, Moi D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011; 19(4):512-26.
65. Shen ZL, Seppanen H, Kauttu T, et al. Vasohibin-1 Expression Is Regulated by Transforming Growth Factor-beta/Bone Morphogenic Protein Signaling Pathway Between Tumor-Associated Macrophages and Pancreatic Cancer Cells. Journal of Interferon and Cytokine Research 2013; 33(8):428-433.
66. Banerjee S, Halder K, Bose A, et al. TLR signaling-mediated differential histone modification at IL-10 and IL-12 promoter region leads to functional impairments in tumor-associated macrophages. Carcinogenesis 2011; 32(12):1789-1797.
67. Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 2010; 12(11):1113-25.
68. Yi L, Xiao H, Xu M, et al. Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 2011; 232(1-2):75-82.
69. Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2014.
70. Okuda H, Kobayashi A, Xia B, et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 2012; 72(2):537-47.
71. Mak KK, Wu ATH, Lee WH, et al. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-kappa B/microRNA 448 circuit. Molecular Nutrition & Food Research 2013; 57(7):1123-1134.
72. Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 2013; 31(2):248-58.
73. Ding JX, Jin W, Chen CM, et al. Tumor Associated Macrophage X Cancer Cell Hybrids May Acquire Cancer Stem Cell Properties in Breast Cancer. Plos One 2012; 7(7).
74. Hou YC, Chao YJ, Tung HL, et al. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer 2014.
75. Jinushi M, Chiba S, Yoshiyama H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 2011; 108(30):12425-30.
76. Oguma K, Oshima H, Aoki M, et al. Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. Embo Journal 2008; 27(12):1671-1681.
77. He KF, Zhang L, Huang CF, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int 2014; 2014:838632.
78. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14(6):e218-28.
79. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 3(10):791-800.
80. Conroy H, Mawhinney L, Donnelly SC. Inflammation and cancer: macrophage migration inhibitory factor (MIF)--the potential missing link. QJM 2010; 103(11):831-6.
81. Zernecke A, Bernhagen J, Weber C. Macrophage migration inhibitory factor in cardiovascular disease. Circulation 2008; 117(12):1594-602.
82. Wilson JM, Coletta PL, Cuthbert RJ, et al. Macrophage migration inhibitory factor promotes intestinal tumorigenesis. Gastroenterology 2005; 129(5):1485-503.
83. Meyer-Siegler KL, Iczkowski KA, Leng L, et al. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol 2006; 177(12):8730-9.
84. Funamizu N, Hu C, Lacy C, et al. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma. Int J Cancer 2012.
85. Denz A, Pilarsky C, Muth D, et al. Inhibition of MIF leads to cell cycle arrest and apoptosis in pancreatic cancer cells. J Surg Res 2010; 160(1):29-34.
86. Murakami H, Akbar SM, Matsui H, et al. Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Clin Exp Immunol 2002; 128(3):504-10.
87. Shimizu T, Nishihira J, Watanabe H, et al. Cetirizine, an H1-receptor antagonist, suppresses the expression of macrophage migration inhibitory factor: its potential anti-inflammatory action. Clin Exp Allergy 2004; 34(1):103-9.
88. Ren Y, Law S, Huang X, et al. Macrophage migration inhibitory factor stimulates angiogenic factor expression and correlates with differentiation and lymph node status in patients with esophageal squamous cell carcinoma. Ann Surg 2005; 242(1):55-63.
89. Xu X, Wang B, Ye C, et al. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett 2008; 261(2):147-57.
90. Binsky I, Haran M, Starlets D, et al. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 2007; 104(33):13408-13.
91. Tan LP, Ye X, Zhou Y, et al. Macrophage migration inhibitory factor is overexpressed in pancreatic cancer tissues and impairs insulin secretion function of beta-cell. Journal of Translational Medicine 2014; 12.
92. Palena C, Hamilton DH, Fernando RI. Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol 2012; 8(6):713-22.
93. Zarogoulidis P, Katsikogianni F, Tsiouda T, et al. Interleukin-8 and interleukin-17 for cancer. Cancer Invest 2014; 32(5):197-205.
94. Holmes WE, Lee J, Kuang WJ, et al. Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253(5025):1278-80.
95. Waugh DJJ, Wilson C. The Interleukin-8 Pathway in Cancer. Clinical Cancer Research 2008; 14(21):6735-6741.
96. Yuan A, Chen JJ, Yao PL, et al. The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 2005; 10:853-65.
97. Kuwada Y, Sasaki T, Morinaka K, et al. Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. International Journal of Oncology 2003; 22(4):765-771.
98. Zarogoulidis P, Katsikogianni F, Tsiouda T, et al. Interleukin-8 and interleukin-17 for cancer. Cancer Investigation 2014; 32(5):197-205.
99. Ju DW, Sun DZ, Xiu LJ, et al. Interleukin-8 is associated with adhesion, migration and invasion in human gastric cancer SCG-7901 cells. Medical Oncology 2012; 29(1):91-99.
100. Chen Y, Chen L, Li JY, et al. ERbeta and PEA3 co-activate IL-8 expression and promote the invasion of breast cancer cells. Cancer Biology & Therapy 2011; 11(5):497-511.
101. Yuan A, Chen JJW, Yao PL, et al. The role of interleukin-8 in cancer cells and microenvironment interaction. Frontiers in Bioscience 2005; 10:853-865.
102. Singh JK, Farnie G, Bundred NJ, et al. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-Dependent and -Independent Mechanisms. Clinical Cancer Research 2013; 19(3):643-656.
103. Hwang WL, Yang MH, Tsai ML, et al. SNAIL Regulates Interleukin-8 Expression, Stem Cell-Like Activity, and Tumorigenicity of Human Colorectal Carcinoma Cells. Gastroenterology 2011; 141(1):279-U382.
104. Chen LY, Fan J, Chen H, et al. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Scientific Reports 2014; 4.
105. Schall TJ, Jongstra J, Dyer BJ, et al. A Human T-Cell-Specific Molecule Is a Member of a New Gene Family. Journal of Immunology 1988; 141(3):1018-1025.
106. Schall TJ, Bacon K, Toy KJ, et al. Selective Attraction of Monocytes and Lymphocytes-T of the Memory Phenotype by Cytokine Rantes. Nature 1990; 347(6294):669-671.
107. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Letters 2008; 267(2):271-285.
108. Aldinucci D, Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014; 2014:292376.
109. Couty JP, Gershengorn MC. G-protein-coupled receptors encoded by human herpesviruses. Trends Pharmacol Sci 2005; 26(8):405-11.
110. McCormack G, Moriarty D, O'Donoghue DP, et al. Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm Res 2001; 50(10):491-5.
111. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 2006; 16(1):38-52.
112. Yaal-Hahoshen N, Shina S, Leider-Trejo L, et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clinical Cancer Research 2006; 12(15):4474-4480.
113. Velasco-Velazquez M, Xolalpa W, Pestell RG. The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 2014; 18(11):1265-75.
114. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162):557-U4.
115. Wang SW, Wu HH, Liu SC, et al. CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma. PLoS One 2012; 7(4):e35101.
116. Huang CY, Fong YC, Lee CY, et al. CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochemical Pharmacology 2009; 77(5):794-803.
117. Yi EH, Lee CS, Lee JK, et al. STAT3-RANTES Autocrine Signaling Is Essential for Tamoxifen Resistance in Human Breast Cancer Cells. Molecular Cancer Research 2013; 11(1):31-42.
118. Kato T, Fujita Y, Nakane K, et al. CCR1/CCL5 interaction promotes invasion of taxane-resistant PC3 prostate cancer cells by increasing secretion of MMPs 2/9 and by activating ERK and Rac signaling. Cytokine 2013; 64(1):251-257.
119. Long HX, Xie RK, Xiang T, et al. Autocrine CCL5 Signaling Promotes Invasion and Migration of CD133+Ovarian Cancer Stem-Like Cells via NF-?B-Mediated MMP-9 Upregulation. Stem Cells 2012; 30(10):2309-2319.
120. Klimstra DS, Longnecker DS. K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 1994; 145(6):1547-50.
121. Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 1997; 57(9):1731-4.
122. Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res 2000; 6(8):2969-72.
123. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6):883-99.
124. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5):646-74.
125. Perez-Mancera PA, Guerra C, Barbacid M, et al. What we have learned about pancreatic cancer from mouse models. Gastroenterology 2012; 142(5):1079-92.
126. Zheng L, Xue J, Jaffee EM, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 2013; 144(6):1230-40.
127. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4(1):71-8.
128. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9(4):259-70.
129. Takanami I, Takeuchi K, Kodaira S. Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: association with angiogenesis and poor prognosis. Oncology 1999; 57(2):138-42.
130. Leek RD, Lewis CE, Whitehouse R, et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996; 56(20):4625-9.
131. Lissbrant IF, Stattin P, Wikstrom P, et al. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 2000; 17(3):445-51.
132. Hanada T, Nakagawa M, Emoto A, et al. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000; 7(7):263-9.
133. Miyazaki K, Maruyama T, Masuda H, et al. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PLoS One 2012; 7(12):e50749.
134. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1):159-74.
135. Liu X, Shah A, Gangwani MR, et al. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Scientific Reports 2014; 4.
136. Hendricks LC, McClanahan SL, Palade GE, et al. Brefeldin A affects early events but does not affect late events along the exocytic pathway in pancreatic acinar cells. Proc Natl Acad Sci U S A 1992; 89(15):7242-6.
137. Strande JL, Routhu KV, Hsu A, et al. Gadolinium decreases inflammation related to myocardial ischemia and reperfusion injury. J Inflamm (Lond) 2009; 6:34.
138. van Schooten CJ, Shahbazi S, Groot E, et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood 2008; 112(5):1704-12.
139. Al-Abed Y, Dabideen D, Aljabari B, et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem 2005; 280(44):36541-4.
140. Dimou AT, Syrigos KN, Saif MW. Novel agents for the treatment of pancreatic adenocarcinoma: any light at the end of the tunnel? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010. JOP 2010; 11(4):324-7.
141. Oberstein PE, Saif MW. First-line treatment for advanced pancreatic cancer. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011. JOP 2011; 12(2):96-100.
142. Winter JM, Cameron JL, Campbell KA, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg 2006; 10(9):1199-210; discussion 1210-1.
143. Reid-Lombardo KM, Fridley BL, Bamlet WR, et al. Survival is associated with genetic variation in inflammatory pathway genes among patients with resected and unresected pancreatic cancer. Ann Surg 2013; 257(6):1096-102.
144. Lai LC, Cheong SK, Goh KL, et al. Clinical usefulness of tumour markers. Malays J Pathol 2003; 25(2):83-105.
145. Duffy MJ. CA 19-9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem 1998; 35 ( Pt 3):364-70.
146. Sakahara H, Endo K, Nakajima K, et al. Serum CA 19-9 concentrations and computed tomography findings in patients with pancreatic carcinoma. Cancer 1986; 57(7):1324-6.
147. Camp RL, Charette LA, Rimm DL. Validation of tissue microarray technology in breast carcinoma. Lab Invest 2000; 80(12):1943-9.
148. Su Y, Shrubsole MJ, Ness RM, et al. Immunohistochemical expressions of Ki-67, cyclin D1, beta-catenin, cyclooxygenase-2, and epidermal growth factor receptor in human colorectal adenoma: a validation study of tissue microarrays. Cancer Epidemiol Biomarkers Prev 2006; 15(9):1719-26.
149. Boone J, van Hillegersberg R, van Diest PJ, et al. Validation of tissue microarray technology in squamous cell carcinoma of the esophagus. Virchows Arch 2008; 452(5):507-14.
150. Sarkar FH, Li Y, Wang Z, et al. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 2009; 64(5):489-500.
151. Shinichi Maeda DQ, Hiroyuki Shinchi, Hiroshi Kurahara, Yuko Mataki, Kousei Maemura, Shoji Natsugoe, and Sonshin Takao. CD44 and CD133 Expressions in Primary Tumor Cells Correlate to Survival of Pancreatic Cancer Patients. The Open Surgical Oncology 2009; 1:1-7.
152. Galizia G, Gemei M, Del Vecchio L, et al. Combined CD133/CD44 Expression as a Prognostic Indicator of Disease-Free Survival in Patients With Colorectal Cancer. Archives of Surgery 2012; 147(1):18-24.
153. Horst D, Kriegl L, Engel J, et al. Prognostic Significance of the Cancer Stem Cell Markers CD133, CD44, and CD166 in Colorectal Cancer. Cancer Investigation 2009; 27(8):844-850.
154. Immervoll H, Hoem D, Sakariassen PO, et al. Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008; 8:48.
155. Immervoll H, Hoem D, Steffensen OJ, et al. Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers. J Histochem Cytochem 2011; 59(4):441-55.
156. Haraguchi N, Ohkuma M, Sakashita H, et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol 2008; 15(10):2927-33.
157. Shi C, Tian R, Wang M, et al. CD44+ CD133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma. Cancer Biol Ther 2010; 10(11):1182-90.
158. Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 2009; 106(1):268-73.
159. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 2009; 4(8):e6816.
160. Kallifatidis G, Rausch V, Baumann B, et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 2009; 58(7):949-63.
161. Clark CE, Hingorani SR, Mick R, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Research 2007; 67(19):9518-27.
162. Lesina M, Kurkowski MU, Ludes K, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19(4):456-69.
163. Komohara Y, Ohnishi K, Kuratsu J, et al. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 2008; 216(1):15-24.
164. Bronkhorst IH, Ly LV, Jordanova ES, et al. Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci 2011; 52(2):643-50.
165. Kawamura K, Komohara Y, Takaishi K, et al. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int 2009; 59(5):300-5.
166. Osinsky S, Bubnovskaya L, Ganusevich I, et al. Hypoxia, tumour-associated macrophages, microvessel density, VEGF and matrix metalloproteinases in human gastric cancer: interaction and impact on survival. Clin Transl Oncol 2011; 13(2):133-8.
167. van Dongen M, Savage ND, Jordanova ES, et al. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int J Cancer 2010; 127(4):899-909.
168. Shigeoka M, Urakawa N, Nakamura T, et al. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci 2013.
169. Hirayama S, Ishii G, Nagai K, et al. Prognostic impact of CD204-positive macrophages in lung squamous cell carcinoma: possible contribution of Cd204-positive macrophages to the tumor-promoting microenvironment. J Thorac Oncol 2012; 7(12):1790-7.
170. Fushimi S, Matsumoto M, Takahashi S, et al. Clinical significance of CD204-positive M2 macrophage in colorectal cancer. Virchows Archiv 2012; 461:S177-S178.
171. Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. British Journal of Cancer 2013; 108(4):914-923.
172. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clinical Cancer Research 2008; 14(21):6735-41.
173. Carbone C, Melisi D. NF-kappa B as a target for pancreatic cancer therapy. Expert Opinion on Therapeutic Targets 2012; 16:S1-S10.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-03-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-03-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw