系統識別號 U0026-2002201815152500
論文名稱(中文) 高空大氣閃電影像儀觀測之不同極性紅色精靈特性分布研究
論文名稱(英文) The Distribution of the ISUAL Sprites with Different Polarities
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 106
學期 1
出版年 107
研究生(中文) 陳翰
研究生(英文) Han Chen
學號 LA6041072
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 指導教授-陳炳志
中文關鍵字 閃電  高空短暫發光現象  紅色精靈  高空大氣閃電影像儀  極低頻磁場 
英文關鍵字 Lightning  Transient Luminous Events  Sprite  Imager of Sprite and Upper Atmospheric Lightning  Extremely Low Frequency magnetic field 
中文摘要 在過去的研究中,發現超過99%的紅色精靈是由正極性雲對地閃電且高電荷矩變化的放電所觸發,過去觀測到的負極性紅色精靈事件數目極為稀少,因此紅色精靈與閃電的電荷矩變化分布上有極大的的差異,也使兩者的極性分布上存在著矛盾的關係。在本論文中將使用高空大氣閃電影像儀(Imager of Sprite Upper Atmosphere Lightning)任務的高空短暫發光現象事件資料庫結合安裝於鹿林天文台與美國杜克(Duke)大學的極低頻磁場天線系統,並發展出一套有效率且準確的演算法進行分析紅色精靈事件的極性與分布,以全球性、長期的統計重新檢視紅色精靈在極性與電荷矩變化上的矛盾。
在本研究中,分析了2009年至2015年距離鹿林與杜克大學ELF測站5000公里範圍內的ISUAL所觀測到的紅色精靈事件,透過本論文所發展的演算法進行閃電放電極性判定,結果顯示可判定極性的紅色精靈事件超過75%,且僅有超過多數的紅色精靈事件為正極性閃電所觸發,這與先前的研究並不完全相符;令人驚訝的是在結果中一共找到了127個負極性事件,且分布於低緯度地區;超過80%的負極性紅色精靈事件會伴隨著精靈暈盤的發生,這與Williams et al., 2012的結果並不衝突;電荷矩分析結果顯示負極性平均的電荷矩略低於正極性且為高電荷矩所觸發,並且與閃電的電荷矩分布相似,結合上述統計分析結果間接證實先前負極性紅色精靈的矛盾是不存在的,也為未來進一步發展負極性紅色精靈放電過程的理論模型提供重要的線索與特徵。
英文摘要 More than 99% sprites are initiated by positive cloud-to-ground (+CG) lightning with high charge moment change (CMC), and there exists a paradox between sprite and lightning with their observed polarity and CMC [Williams et al., 2007]. Two scientific data, including the Imager of Sprite Upper Atmosphere Lightning (ISUAL) TLE database and the magnetic field measurements at extremely low frequency (ELF) band-pass are used to re-investigate this paradox from the global view with a long timeline.
In this study, the ISUAL-captured sprites from 2009 to 2015 and with the distance within 5,000km from either Lulin or Duke ELF stations are selected to analyze their electric characteristics including polarity and CMC. 127 –CG sprites are surprisingly identified, up to 20% of all polarity-identified sprites. These negative sprites mainly congregate in the low latitude region, within 20 degrees in latitude. Further statistics show that more than 80% negative sprites appear with halo signatures, but the ~70% of the positive sprites prefer to be produced without other types of TLEs. The CMC distribution of the sprites analyzed in this study is similar to lightning one, and indicates both positive and negative sprites are triggered by high CMC lightning. In this work, negative sprites are found in low latitude which are missing due to the geographic constraint of the ground observation in the past studies, and their distribution and electric characteristics show the sprite paradox doesn’t exist anymore, but a new theoretical model for negative sprite is necessary.
論文目次 摘要 I
Extended Abstract II
致謝 VII
圖目錄 X
表目錄 XIV
第1章 緒論 1
1.1 閃電與紅色精靈 1
1.2 高空短暫發光現象 5
1.2.1. 紅色精靈 6
1.3 紅色精靈悖論 6
1.4 研究動機與目的 8
第2章 科學資料介紹 9
2.1 ISUAL觀測資料 9
2.1.1 ISUAL時間修正 17
2.2 閃電極低頻磁場量測系統 18
2.2.1 鹿林ELF測站 18
2.2.2 杜克大學ELF測站 20
第3章 極低頻磁場訊號分析方法與紅色精靈的極性判定 23
3.1 TLEs事件擷取 24
3.2 60Hz市電訊號濾波處理 25
3.3 放電事件瞬變現象的篩選 28
3.4 電波訊號放電時間的確定 31
3.5 極性的判定 32
3.6 電荷矩改變的計算 34
第4章 分析與統計結果 39
4.1 時間修正與峰值間的時間差之統計分析結果 39
4.2 紅色精靈全球分布之初步分析結果 41
4.3 負極性之紅色精靈分布 45
4.4 正極性之紅色精靈的分佈 48
4.5 無法判定極性之紅色精靈分布 51
4.6 紅色精靈的電荷矩改變 54
4.7 分析與討論 56
第5章 結論與展望 60
參考文獻 62
參考文獻 Chen, A. B., C. L. Kuo, Y. J. Lee, H. T. Su, R. R. Hsu, J. L. Chern, H. U. Frey, S. B. Mende, Y. Takahashi, H. Fukunishi, Y. S. Chang, T. Y. Liu, and L. C. Lee (2008), Global distribution and occurrence rates of transient luminous events, J.Geophys.Res., 113, A08306.

Chern, J. L., Hsu, R. R., Su, H. T., Mende, S. B., Fukunishi, H., Takahashi, Y., & Lee, L. C. (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 647-659.

Cummer, S. A. (2006), Measurements of lightning parameters from remote electromagnetic fields, NATO Advanced Study Institute on Sprites, Elves and Intende Lightning Discharges, eds. M. Fullekrug, Springer, 191-210.

Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a large upward electrical discharge above a thunderstrom, Science, 249, 48-51.

Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16):2157-2160.

Hu, W., Cummer, S. A., Lyons, W. A., & Nelson, T. E. (2002), Lightning charge moment changes for the initiation of sprites, Geophysical Research Letters, 29(8).

Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104(D14), 16,943–16,964, doi:10.1029/1999JD900139.

Krehbiel, P. R. (1986), The electrical structure of thunderstorms in the earth’s electrical environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press.

Lee, L. J., Chen, A. B., Chang, S. C., Kuo, C. L., Su, H. T., Hsu, R. R., Wu, C. C., Lin, P. H., Frey, H. U., Mende, S.B., Takahashi, Y. and Lee, L. C. (2010), Controlling synoptic‐scale factors for the distribution of transient luminous events. Journal of Geophysical Research: Space Physics, 115(A8).

Li, J., Cummer, S., Lu, G., & Zigoneanu, L. (2012), Charge moment change and lightning‐driven electric fields associated with negative sprites and halos, Journal of Geophysical Research: Space Physics, 117(A9).

Lu, G., Cummer, S. A., Blakeslee, R. J., Weiss, S., & Beasley, W. H. (2012), Lightning morphology and impulse charge moment change of high peak current negative strokes, Journal of Geophysical Research: Atmospheres, 117(D4).

Lyons, A. and E. R. Williams (2003), Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Preprints, 17th Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., 725–732.

Mackerras, D. (1985), Automatic short-range measurement of the cloud flash to ground flash ratio in thunderstorms, J. Geophys. Res., 90(D4), 6195–6201, doi:10.1029/JD090iD04p06195.

Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins (2002), The North American lightning network (NALDN)- first results: 1998-2000, Mon. Wea. Rev.,130, 2098-2109.

Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields, Geophys. Res. Lett., 23, 649.

Qin, J., Celestin, S., & Pasko, V. P. (2012), Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites, Geophysical Research Letters, 39(22).

Sato, M., & Fukunishi, H. (2003), Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events, Geophysical research letters, 30(16).

Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprites94 campaign: Red sprites, Geophys. Res. Lett., 22, 1205-1208.

Stellingwerf, R. F. (1978), Period determination using phase dispersion minimization, Astrophysical Journal, 224, 953-960, doi: 10.1086/156444.

Su, H. T., Hsu, R. R., Chen, A. B., Wang, Y. C., Hsiao, W. S., Lai, W. C., & Fukunishi, H. (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974–976, doi:10.1038/nature01759.

Wescott, E. M., D. D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites 94 aircraft campaign: Blue jets, Geophys. Res. Lett., 22, 1209-1212.

Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. Sao-Sabbas (2001), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106, 10467-10477.

Williams, E. R. (1998), The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689-692.

Williams, E. R., E. Downes, R. Boldi, W. Lyons, and S. Hechman (2007), Polarity asymmetry of sprite-producing lightning: a paradox, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.

Williams, E., Kuo, C., Bor, J., Satori, G., Newsome, R., Adachi, T., Boldi, R., Chen, A., Downes, E., Hsu, R. R., Lyons, W., Saba, M. M. F., Taylor, M. and Su, H. T. (2012). Resolution of the sprite polarity paradox: The role of halos. Radio Science, 47(2), n/a-n/a. http://dx.doi.org/10.1029/2011rs004794

Yukihiro, T. and Y. Kazuya (2009), SPRITE-SAT, 7th IAA Symposium on Small Satellites for Earth Observation, IAA-B7-0203.

郭政靈,福衛二號科學酬載所觀測到的sprites以及elves的分析,國立成功大學物理研究所博士論文 (2007)。

許瑞榮,福衛二號高空大氣閃電影像儀科學團隊計畫2010年第二次成果報告,國家太空中心 (2010)。

黃鵬宇,2010年極低頻磁場波形量測分析應用於高空短暫發光現象之極性統計,國立成功大學太空與電漿科學研究所碩士論文 (2012)。

黃崧銘,各類高空短暫發光現象的超低頻與極低頻至甚低頻電波特性,國立成功大學物理研究所博士論文 (2013)。

陳毅倍,閃電與高空短暫發光現象之放電極性全球分布統計,國立成功大學太空與電漿科學研究所碩士論文 (2015) 。

黃柏勛,使用希爾伯特黃方法分析高空短暫發光現象的早期訊號,國立成功大學物理研究所碩士論文 (2015) 。

吳彥蓉,氧原子為淘氣精靈、夜間D層電子濃度遽增及OH*Meinel波段大氣輝光發生高度之關鍵因素,國立成功大學物理研究所博士論文 (2017)。
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-20起公開。

  • 如您有疑問,請聯絡圖書館