進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2001202017554700
論文名稱(中文) 探討碳化鈦奈米管陣列之組蛋白吸附能力並用於改善其抗菌效果
論文名稱(英文) Evaluate Histone adsorption of TiC nanotube arrays to improve its antibacterial activity
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 柯志融
研究生(英文) Chih-Jung Ko
學號 P86061184
學位類別 碩士
語文別 英文
論文頁數 99頁
口試委員 指導教授-李澤民
口試委員-林睿哲
口試委員-陳炳宏
口試委員-黃芷翎
中文關鍵字 陽極氧化  碳化鈦奈米管  真空熱處理  自組裝單分子膜  組蛋白  抗菌測試  細胞反應 
英文關鍵字 anodization titanium oxide (ATO)  titanium carbide (TiC) nanotube  vacuum heat treatment  self-assembled monolayer (SAMs)  Histone  antibacterial activity  cell response 
學科別分類
中文摘要 鈦金屬本身由於其優異的機械性質、抗腐蝕性與疲勞強度,因此已廣泛應用於骨科與牙科領域中,並且透過不同的表面改質方式可以達到良好的骨整合能力,其中陽極氧化法可於表面製備出有序且可控性高的奈米孔洞或是奈米管結構,這樣的奈米結構已被證實具有促進骨間質幹細胞分化的作用;然而此種具備良好生物活性之二氧化鈦塗層的機械性質不足,在臨床手術中易有脫落的現象進而引發周圍組織的不良反應,本研究藉由新型碳化鈦奈米管陣列,來產生較佳機械性質的表面結構。此外,實驗中進一步以組蛋白 (Histone, type 2A) 作為陽離子型抗菌劑,該類抗菌劑具有高度正電之表面電荷,易於和帶有陰電性的細菌細胞膜表面結合從中破壞細菌細胞膜表面,或是進入細菌體內干擾DNA的合成並影響其正常生理功能,因此實驗中透過探討其對於不同奈米管表面結構與性質之吸附能力,來達到有效的抑制細菌生物膜的生長。
本研究利用陽極氧化 (anodized titanium oxide, ATO) 在鈦基材上製備出二氧化鈦奈米管陣列,並利用真空熱處理方式 (vacuum heat treatment, VHT) 將碳原子置換掉氧原子來獲得碳化鈦奈米管,接續分別利用低溫射頻氧電漿 (RF oxygen plasma treatment)及自組裝單分子膜技術 (self-assembled monolayer, SAMs)來進行表面化學性改質以獲得特殊表面,預期可以改善碳化鈦奈米管之生物親和性與蛋白質吸附能力。
第一部分的研究在於透過調控陽極氧化之電壓所形成之不同管徑的奈米管,來找到最佳組蛋白吸附量之參數,並且比較二氧化鈦與碳化鈦奈米管對於組蛋白吸附的差異。第二部分則是藉由胺基(-NH2)與羧酸基(-COOH)自組裝單分子膜對碳化鈦奈米管進行接枝,分別形成帶正電和帶負電的表面官能基團,在電荷吸引的狀況之下提升組蛋白於碳化鈦奈米管的吸附能力,進而提供較強的化學鍵結。
在抗菌測試方面,使用大腸桿菌 (Escherichia coli) 和金黃色葡萄球菌(Staphylococcus aureus),結果由3小時之時間抑制曲線顯示組蛋白之大腸桿菌最小抑菌濃度為80 μg/mL,金黃色葡萄球菌則為160 μg/mL;此外透過掃描式電子顯微鏡觀測細菌的形貌,並發現到細菌體破裂的狀況。接著評估組蛋白吸附於材料表面時的抗菌效果,其中在組蛋白吸附的組別中細菌濃度皆有顯著性的減少。最後本實驗以不同管徑的二氧化鈦和碳化鈦奈米管來評估其細胞貼附,細胞增生和細胞分化的能力,結果證實大管徑碳化鈦奈米管表面具有較佳的細胞增生表現而小管徑的組別則是顯示較好的細胞分化能力,以上都證實了本研究製備出同時具有抗菌能力和增加細胞活性之表面改質方式。
英文摘要 As a result of the excellent mechanical properties, anti-corrosion and fatigue strength of titanium metal, it is broadly used in dental and orthopedic field. We focus on improving the osseointegration ability by different surface modification treatments and one of them is anodization titanium oxide (ATO) method. The feature of ATO method is of the highly ordered and controllable nanopore or nanotube structure. Further, this kind of nano-structure has been proved with the function to accelerate the differentiation of bone marrow stem cells. Nevertheless, the lack of sufficient mechanical property of this bioactive titanium oxide coating will be easily ruptured during the surgical procedure, inducing adverse effect of surrounding tissues. In our study, we prepared titanium carbide (TiC) nanotube arrays to perform better mechanical strength of surface structure. In addition, our research used Histone (type 2A) as the cationic antimicrobial reagent. The feature of Histone is the positively charged protein and it has the tendency to combine with negatively charged bacteria membrane, entering the bacteria body to disrupt the DNA formation or breaking bacteria membrane from outside. Hence, we evaluated the effect of different nanotube structure with Histone adsorption to inhibit the bacteria growth.
In this study, we used ATO method to prepared titanium oxide (TiO2) nanotube arrays and replaced the oxygen with carbon to proceed TiC nanotubes by vacuum heat treatment (VHT). Next, the TiC samples will be processed with the RF oxygen plasma treatment and self-assembled monolayer (SAMs) to acquire special surface via surface chemical modification, which could be improved the Histone adsorption of TiC nanotubes.
First part of my research is empathized on adjusting ATO applied voltage to find the optimal Histone adsorption concentration and compared to TiC nanotube. Second part begins with surface grafting of SAMs and their terminal group is –NH2 and –COOH, respectively. These two terminal groups presented positive and negative functional groups. With the attractive electric force, which will improve the adsorption of TiC nanotube and also provide stronger chemical bindings.
The bacteria strains we used in vitro were Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Based on time killing curve for 3 hours, the MIC of E.coli is 80 μg/mL and S.aureus is 160 μg/mL. We also evaluated the bacteria morphology and viability of Histone adsorption samples. The results showed the bacteria numbers decreased with significance difference. At last, this study used cell adhesion, cell proliferation and cell differentiation to evaluate different diameter of TiO2 and TiC nanotube surface. The above data confirmed that we successfully prepared the surface modification with both antibacterial activity and cell activity.
論文目次 Abstract I
摘要 III
誌謝 V
Contents VII
List of Tables IX
List of Figures X
Chapter 1 Introduction 1
1-1 Background 1
1-2 Titanium and titanium alloys for medical applications 3
1-3 Titanium oxide nanotube arrays 4
1-4 Vacuum heat treatment 7
1-5 Protein interaction 8
1-6 Histone antibacterial activity 10
1-7 Self-assembled monolayer 12
1-8 Motivation and objective 14
Chapter 2 Materials and methods 16
2-1 Experimental procedure 16
2-2 Materials 16
2-3 Experimental instruments 18
2-4 Preparation of specimens 19
2-4-1 Titanium substrate 19
2-4-2 Anodization titanium oxide method 20
2-4-3 Vacuum heat treatment 20
2-4-4 RF oxygen plasma treatment 20
2-4-5 Self-assembled monolayer 21
2-4-6 Histone adsorption assay 21
2-5 Specimens surface characteristic analysis 22
2-5-1 Surface morphology and element composition 22
2-5-2 Surface phase composition analysis 22
2-5-3 Surface wettability 23
2-5-4 Surface chemical composition analysis 23
2-6 In vitro test 24
2-6-1 Cell culture 24
2-6-2 Bacteria culture 24
2-6-3 Samples sterilization 25
2-6-4 Histone killing assay 25
2-6-5 Bacteria adhesion and proliferation 25
2-6-6 Bacteria immobilization 25
2-6-7 Bacteria viability test 26
2-6-8 Cell morphology 26
2-6-9 Cell proliferation 27
2-6-10 ALP activity assay 28
2-6-11 Statistical analysis 28
Chapter 3 Results and discussion 29
3-1 Surface features of TiO2 and TiC nanotubes 29
3-1-1 Surface morphology and chemical composition 29
3-1-2 Phase composition analysis 30
3-1-3 Surface wettability 31
3-2 Histone adsorption on TiO2 and TiC nanotube 32
3-3 Surface chemical composition analysis of TiO2 and TiC nanotubes with Histone adsorbed 34
3-4 Surface features of Histone adsorption on self-assembled monolayers (SAMs) functionalize TiC nanotube 36
3-4-1 Surface wettability 36
3-4-2 Histone adsorption 37
3-4-3 Surface chemical composition analysis 38
3-5 In vitro test 39
3-5-1 Histone killing assay 39
3-5-2 Bacteria adhesion 40
3-5-3 Bacteria viability 41
3-5-4 Cell growth curve 42
3-5-5 Cell morphology 42
3-5-6 Cell proliferation and differentiation 43
Chapter 4 Conclusion 46
Tables 48
Figures 61
References 94
參考文獻 [1] L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, "Surface treatments of titanium dental implants for rapid osseointegration," Dental materials, vol. 23, no. 7, pp. 844-854, 2007.
[2] B. Boyan, A. Cheng, R. Olivares-Navarrete, and Z. Schwartz, "Implant surface design regulates mesenchymal stem cell differentiation and maturation," Advances in dental research, vol. 28, no. 1, pp. 10-17, 2016.
[3] S. Bose, S. F. Robertson, and A. Bandyopadhyay, "Surface modification of biomaterials and biomedical devices using additive manufacturing," Acta biomaterialia, vol. 66, pp. 6-22, 2018.
[4] L. Zhao, L. Liu, Z. Wu, Y. Zhang, and P. K. Chu, "Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation," Biomaterials, vol. 33, no. 9, pp. 2629-2641, 2012.
[5] M. J. Dalby, N. Gadegaard, and R. O. Oreffo, "Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate," Nature materials, vol. 13, no. 6, p. 558, 2014.
[6] K. S. Brammer, C. Choi, C. J. Frandsen, S. Oh, G. Johnston, and S. Jin, "Comparative cell behavior on carbon-coated TiO2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells," Acta biomaterialia, vol. 7, no. 6, pp. 2697-2703, 2011.
[7] H. Ananth, V. Kundapur, H. Mohammed, M. Anand, G. Amarnath, and S. Mankar, "A review on biomaterials in dental implantology," International journal of biomedical science: IJBS, vol. 11, no. 3, p. 113, 2015.
[8] K. M. Hotchkiss, K. T. Sowers, and R. Olivares-Navarrete, "Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants," Dental Materials, vol. 35, no. 1, pp. 176-184, 2019.
[9] S. Spriano, S. Yamaguchi, F. Baino, and S. Ferraris, "A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination," Acta biomaterialia, 2018.
[10] M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglic, "Influence of anodization parameters on morphology of TiO2 nanostructured surfaces," Advanced Material Letters, vol. 7, no. 1, pp. 23-28, 2016.
[11] V. Zwilling, E. Darque‐Ceretti, A. Boutry‐Forveille, D. David, M.-Y. Perrin, and M. Aucouturier, "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy," Surface and Interface Analysis, vol. 27, no. 7, pp. 629-637, 1999.
[12] K. Raja, M. Misra, and K. Paramguru, "Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium," Electrochimica Acta, vol. 51, no. 1, pp. 154-165, 2005.
[13] J. M. Macak and P. Schmuki, "Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes," Electrochimica Acta, vol. 52, no. 3, pp. 1258-1264, 2006.
[14] S. A. Alves et al., "Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms," Wear, vol. 384, pp. 28-42, 2017.
[15] S. So, K. Lee, and P. Schmuki, "Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes," Journal of the American Chemical Society, vol. 134, no. 28, pp. 11316-11318, 2012.
[16] J. Park, S. Bauer, K. von der Mark, and P. Schmuki, "Nanosize and vitality: TiO2 nanotube diameter directs cell fate," Nano letters, vol. 7, no. 6, pp. 1686-1691, 2007.
[17] K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. van der Heyde, and S. Jin, "Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface," Acta biomaterialia, vol. 5, no. 8, pp. 3215-3223, 2009.
[18] Y. Hu et al., "TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells," Acta biomaterialia, vol. 8, no. 1, pp. 439-448, 2012.
[19] A. Gao et al., "The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts," Biomaterials, vol. 35, no. 13, pp. 4223-4235, 2014.
[20] A. Alves, F. Oliveira, F. Wenger, P. Ponthiaux, J.-P. Celis, and L. Rocha, "Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants," Journal of Physics D: Applied Physics, vol. 46, no. 40, p. 404001, 2013.
[21] F. G. Oliveira et al., "Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium," Applied Surface Science, vol. 341, pp. 1-12, 2015.
[22] G. Longo et al., "Effect of titanium carbide coating by ion plating plasma-assisted deposition on osteoblast response: A chemical, morphological and gene expression investigation," Surface and Coatings Technology, vol. 204, no. 16-17, pp. 2605-2612, 2010.
[23] M. Brama et al., "Effect of titanium carbide coating on the osseointegration response in vitro and in vivo," Biomaterials, vol. 28, no. 4, pp. 595-608, 2007.
[24] Y. Zhu, W. Wang, X. Jia, T. Akasaka, S. Liao, and F. Watari, "Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD," Applied Surface Science, vol. 262, pp. 156-158, 2012.
[25] R. Zanoni et al., "Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration," Materials Science and Engineering: C, vol. 46, pp. 409-416, 2015.
[26] Q. Huang et al., "Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships," Acta biomaterialia, vol. 51, pp. 505-512, 2017.
[27] M. M. Gentleman and E. Gentleman, "The role of surface free energy in osteoblast–biomaterial interactions," International Materials Reviews, vol. 59, no. 8, pp. 417-429, 2014.
[28] M. Kulkarni et al., "Binding of plasma proteins to titanium dioxide nanotubes with different diameters," International journal of nanomedicine, vol. 10, p. 1359, 2015.
[29] B. S. Kopf, S. Ruch, S. Berner, N. D. Spencer, and K. Maniura‐Weber, "The role of nanostructures and hydrophilicity in osseointegration: In‐vitro protein‐adsorption and blood‐interaction studies," Journal of biomedical materials research Part A, vol. 103, no. 8, pp. 2661-2672, 2015.
[30] E. Gongadze et al., "Adhesion of osteoblasts to a nanorough titanium implant surface," International journal of nanomedicine, vol. 6, p. 1801, 2011.
[31] J. Urbanija et al., "Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution," The Journal of chemical physics, vol. 129, no. 10, p. 09B609, 2008.
[32] K. Anselme, "Osteoblast adhesion on biomaterials," Biomaterials, vol. 21, no. 7, pp. 667-681, 2000.
[33] B. E. Rapuano and D. E. MacDonald, "Surface oxide net charge of a titanium alloy: modulation of fibronectin-activated attachment and spreading of osteogenic cells," Colloids and Surfaces B: Biointerfaces, vol. 82, no. 1, pp. 95-103, 2011.
[34] M. Kulkarni et al., "Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence," Acta biomaterialia, vol. 45, pp. 357-366, 2016.
[35] S. Renvert, A. M. Roos‐Jansåker, and N. Claffey, "Non‐surgical treatment of peri‐implant mucositis and peri‐implantitis: a literature review," Journal of clinical periodontology, vol. 35, pp. 305-315, 2008.
[36] S. Bierbaum et al., "Osteogenic nanostructured titanium surfaces with antibacterial properties under conditions that mimic the dynamic situation in the oral cavity," Biomaterials science, vol. 6, no. 6, pp. 1390-1402, 2018.
[37] S. Morita, C. Tagai, T. Shiraishi, K. Miyaji, and S. Iwamuro, "Differential mode of antimicrobial actions of arginine-rich and lysine-rich histones against Gram-positive Staphylococcus aureus," Peptides, vol. 48, pp. 75-82, 2013.
[38] M. Zasloff, "Antimicrobial peptides of multicellular organisms," nature, vol. 415, no. 6870, p. 389, 2002.
[39] H. Kawasaki and S. Iwamuro, "Potential roles of histones in host defense as antimicrobial agents," Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), vol. 8, no. 3, pp. 195-205, 2008.
[40] J. G. Hirsch, "Bactericidal action of histone," Journal of Experimental Medicine, vol. 108, no. 6, pp. 925-944, 1958.
[41] V. Brinkmann et al., "Neutrophil extracellular traps kill bacteria," science, vol. 303, no. 5663, pp. 1532-1535, 2004.
[42] M. Rose-Martel, G. Kulshreshtha, N. A. Berhane, J. Jodoin, and M. T. Hincke, "Histones from Avian Erythrocytes Exhibit Antibiofilm activity against methicillin-sensitive and methicillin-resistant Staphylococcus aureus," Scientific reports, vol. 7, p. 45980, 2017.
[43] G. Toworfe, R. Composto, I. Shapiro, and P. Ducheyne, "Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers," Biomaterials, vol. 27, no. 4, pp. 631-642, 2006.
[44] G. Mani et al., "Drug delivery from gold and titanium surfaces using self-assembled monolayers," Biomaterials, vol. 29, no. 34, pp. 4561-4573, 2008.
[45] Y. Arima and H. Iwata, "Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers," Biomaterials, vol. 28, no. 20, pp. 3074-3082, 2007.
[46] N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross, and H. Menzel, "Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces," Langmuir, vol. 22, no. 19, pp. 8197-8204, 2006.
[47] E. Ajami and K.-F. Aguey-Zinsou, "Functionalization of electropolished titanium surfaces with silane-based self-assembled monolayers and their application in drug delivery," Journal of colloid and interface science, vol. 385, no. 1, pp. 258-267, 2012.
[48] K. Cai, M. Frant, J. Bossert, G. Hildebrand, K. Liefeith, and K. D. Jandt, "Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation," Colloids and Surfaces B: Biointerfaces, vol. 50, no. 1, pp. 1-8, 2006.
[49] J. Shen, Y. Qi, B. Jin, X. Wang, Y. Hu, and Q. Jiang, "Control of hydroxyapatite coating by self‐assembled monolayers on titanium and improvement of osteoblast adhesion," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 105, no. 1, pp. 124-135, 2017.
[50] C. Chaput, E. Spindler, R. T. Gill, and A. Zychlinsky, "O-antigen protects gram-negative bacteria from histone killing," PloS one, vol. 8, no. 8, p. e71097, 2013.
[51] W. Liu et al., "A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus," Biomaterials, vol. 208, pp. 8-20, 2019.
[52] K. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, "A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications," Journal of bio-and tribo-corrosion, vol. 1, no. 4, p. 28, 2015.
[53] X. Lu et al., "Hydrogenated TiO2 nanotube arrays for supercapacitors," Nano letters, vol. 12, no. 3, pp. 1690-1696, 2012.
[54] S. Bauer, P. Schmuki, K. Von Der Mark, and J. Park, "Engineering biocompatible implant surfaces: Part I: Materials and surfaces," Progress in Materials Science, vol. 58, no. 3, pp. 261-326, 2013.
[55] A. Mazare, I. Paramasivam, F. Schmidt-Stein, K. Lee, I. Demetrescu, and P. Schmuki, "Flame annealing effects on self-organized TiO2 nanotubes," Electrochimica Acta, vol. 66, pp. 12-21, 2012.
[56] K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, and D. Losic, "Tailoring the surface functionalities of titania nanotube arrays," Biomaterials, vol. 31, no. 3, pp. 532-540, 2010.
[57] K. Cai, J. Bossert, and K. D. Jandt, "Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?," Colloids and surfaces B: Biointerfaces, vol. 49, no. 2, pp. 136-144, 2006.
[58] R. A. Gittens et al., "A review on the wettability of dental implant surfaces II: Biological and clinical aspects," Acta biomaterialia, vol. 10, no. 7, pp. 2907-2918, 2014.
[59] L. Hao et al., "Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers," Colloids and Surfaces B: Biointerfaces, vol. 148, pp. 549-556, 2016.
[60] W. Peng et al., "Micropatterned TiO2 nanotubes: fabrication, characterization and in vitro protein/cell responses," Journal of Materials Chemistry B, vol. 1, no. 28, pp. 3506-3512, 2013.
[61] M. Martins, C. Fonseca, M. Barbosa, and B. Ratner, "Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry," Biomaterials, vol. 24, no. 21, pp. 3697-3706, 2003.
[62] L. Tack, K. Schickle, F. Böke, and H. Fischer, "Immobilization of specific proteins to titanium surface using self-assembled monolayer technique," Dental Materials, vol. 31, no. 10, pp. 1169-1179, 2015.
[63] M. Saffarzadeh et al., "Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones," PloS one, vol. 7, no. 2, p. e32366, 2012.
[64] R. C. Richards, D. B. O'Neil, P. Thibault, and K. V. Ewart, "Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar)," Biochemical and biophysical research communications, vol. 284, no. 3, pp. 549-555, 2001.
[65] C. Tagai, S. Morita, T. Shiraishi, K. Miyaji, and S. Iwamuro, "Antimicrobial properties of arginine-and lysine-rich histones and involvement of bacterial outer membrane protease T in their differential mode of actions," Peptides, vol. 32, no. 10, pp. 2003-2009, 2011.
[66] J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, and P. Schmuki, "TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation," Small, vol. 5, no. 6, pp. 666-671, 2009.
[67] F. Veronesi et al., "Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon," Materials Science and Engineering: C, vol. 70, pp. 264-271, 2017.
[68] F. Cui and D. Li, "A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films," Surface and Coatings Technology, vol. 131, no. 1-3, pp. 481-487, 2000.
[69] P. Roy, S. Berger, and P. Schmuki, "TiO2 nanotubes: synthesis and applications," Angewandte Chemie International Edition, vol. 50, no. 13, pp. 2904-2939, 2011.
[70] A. Mor, "Antimicrobial peptides," Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw