進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2001201912435100
論文名稱(中文) 利用半揮發性化合物探討黑炭的降解過程
論文名稱(英文) Black carbon biomarker and degradation:insight from semi-volatile
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 107
學期 1
出版年 108
研究生(中文) 陳婧
研究生(英文) Ching Chen
學號 L46054102
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-梁碧清
口試委員-劉振霖
口試委員-張詠斌
中文關鍵字 黑炭  半揮發物質  不穩定水鐵礦  光譜耦合質譜分析 
英文關鍵字 Black Carbon  Semi-volatile compound  Ferrihydrite  Mass Spectrometry 
學科別分類
中文摘要 近年來全球暖化的議題日趨引起關注,而碳循環被視為環境變遷的關鍵環節。其中,黑炭(Black Carbon)在全球碳循環中扮演極為重要的角色。環境黑炭多為生物質不完全燃燒後所留下來的產物。在燃燒的過程當中,易揮發的S, P, N, O等部分元素快速失去,留下苯環為主的多環芳香烴碳物質。由於苯環的共軛雙鍵結構較不易被斷裂,故相對於其他碳物質而言,黑炭顯得較穩定且不易被分解。此外,黑炭表面的官能基能與周邊環境礦物進行化學鍵結,在化學共穩定的基礎上,會產生表面隔離生物或非生物降解的物理障礙,從而增加黑炭在土壤中的長期穩定度。本研究欲探討黑炭在自然環境中的分子特徵及降解宿命。
我們利用X光近邊緣光譜耦合質譜技術,分析不同溫度燒成(300℃、500℃和700℃)不同生物質來源的黑炭所帶有的半揮發性物質(Semi-volatile Compound),以探討黑炭表面較小分子的結構、環境功能及和與礦物鍵結的可能性。並且比較不同溫度及環境條件因素對表面的半揮發性的物質之影響,藉以尋找黑炭特定分子標記和降解產物。實驗樣本利用草本植物田菁與木本植物柳杉,在不同溫度下燃燒形成黑炭,野外降解實驗將黑炭樣品埋藏於森林土壤中數年(3年及6年)。另外用實驗室厭氧發酵實驗模擬黑炭長年埋藏在自然厭氧環境會歷經降解之情形,在厭氧發酵槽加入自製的水鐵礦(Ferrihydrite),檢視黑炭表面官能基與礦物的鍵結及形成礦物保護的模式。
結果顯示,在相對高溫環境下燃燒生成的黑炭(700度),易揮發元素的比例相對較低,形成的黑炭較為穩定。埋藏於土壤中6年的黑炭,檢視出黑炭受環境微生物降解的訊號。在實驗室厭氧發酵槽中,黑炭與實驗室製備的礦物產生鍵結,同時在黑炭表面形成物理保護。藉由黑炭的半揮發性物質分析,我們歸納出黑炭樣本之間的共同特性。我們從質量及分子碎片光譜分析檢視,推斷出黑炭表面半揮發性物質主要由V-type的木質素(Lignin)組成,主要由分子量166及168的香草酮及香草酸組成,並且在所有黑炭樣品當中皆可見此一光譜訊號。因此,我們將其視為黑炭物質在燃燒過程中所生成之生物標記。黑炭巨分子化學結構及性質複雜,但是分解產物及有類似木質素的特徵。生物質燃燒導致木質素氧化分解形成的官能團,可與環境周圍礦物質形成化學鍵結及物理保護。對此,我們建議更多努力應該用在進一步利用其他分析方法檢視黑炭降解產物之特性,以正確評估黑炭在環境的長期穩定封存的潛力及環境功能。
英文摘要 Black carbon plays an important role in the global carbon cycle. Black carbon is composed of a variety of mostly incompletely-combusted products from biomass or fossil fuel. Normally considered chemically recalcitrant, black carbon may be stabilized within the natural environments for a long time, through interfacial chemical complexation of surface functional groups and minerals, and subsequent physical protection. This study is to investigate the molecular characteristics and the long-term fate of black carbon through degradation in natural environment and lab-mimicking condition. Using synchrotron-based X-ray near-edge absorption spectroscopy and high resolution time-of flight (TOF) mass spectrometry, we study the chemical structure and properties of semi-volatile compounds from black carbon made at different temperatures and from different biomass sources. We aim to seek a biomarker for the ill-defined black carbon, and probe the chemistry and functionality of small degradation products in the form of semi-volatile compounds over time. A lower level of oxidation and lower proportion was found for the semi-volatile compounds from black carbon made at higher-temperature (700C). For black carbon samples made at high temperature (700C) and buried in soil for six years, signal of biological degradation was observed. Anaerobic degradation happened to black carbon made at both low (500C) and high temperatures (700C) within the bioreactor. Chemical complexation and mineral coating was observed on the interface of black carbon and short-range-order minerals. A biomarker was found in all black carbon samples as V-type lignin component (MW166&168, C9H10O3&C8H8O4). The degradation products and path of black carbon are suggested similar to lignin. Our research provided insight on the molecular characteristics and degradation of black carbon, and contribute to the understanding of its long term fate, stabilization and functionality in the natural environment.
論文目次 前人文獻 1
一、 黑炭影響全球碳循環與氣候變遷 1
二、 碳循環研究發展 3
三、 黑炭的應用與減碳機制 6
四、 黑炭的碳封存 9
五、 自然界的黑炭與亞馬遜黑土 11
六、 黑炭的穩定性 12
七、 黑炭的生成 14
八、 黑炭的結構 16
九、 黑炭中可能含有的有機物質 17
十、 生物炭的降解、木質素的環境轉化 18
十一、 生物炭缺氧環境中的降解作用 19
十二、 黑炭相關的研究方法 20
研究方法 21
一、 黑炭樣品 23
二、 Ferrihydrite製備與保存 24
三、 厭氧發酵實驗 27
四、 分析前處理 29
五、 數據分析 30
結果與討論 32
一、 VUV質譜數據 33
二、 Soft X-ray質譜(TOF-MS)數據 34
三、 NEXAFS光譜數據 37
結論與建議 40
表格 42
圖 51
引用文獻 83
附錄 95 
參考文獻 Ackerman, F. (2000). Waste Management and Climate Change. Local Environment, 5(2), 223-229.
Akhter, M. S., Chughtai, A. R., & Smith, D. M. (1985a). The Structure of Hexane Soot I: Spectroscopic Studies. Applied Spectroscopy, 39(1), 143-153.
Akhter, M. S., Chughtai, A. R., & Smith, D. M. (1985b). The Structure of Hexane Soot II: Extraction Studies. Applied Spectroscopy, 39(1), 154-167.
Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., . . . Ramanathan, V. (2012). Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. 120(6), 831-839.
Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781.
Arnold, J. R., & Libby, W. F. J. S. (1951). Radiocarbon dates. 113(2927), 111-120.
Baldock, J. A., & Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry, 33(9), 1093-1109.
Barker, N., & Evans, L. (2009). Evaluation of Opportunities for Converting Indigenous UK Wastes to Fuels and Energy (Report), NNFCC 09-012.
Battersby, S. J. U. o. T., Ohio. (2004). Space molecules point to organic origins.
Becker, M., Ladha, J. K., & Ali, M. (1995). Green manure technology: Potential, usage, and limitations. A case study for lowland rice. Plant and Soil, 174(1/2), 181-194.
Bird, M., Moyo, C., Veenendaal, E., Lloyd, J., & Frost, P. J. G. b. c. (1999). Stability of elemental carbon in a savanna soil. 13(4), 923-932.
Boone, D., & Mah, R. (2006). Transitional bacteria in anaerobic digestion of biomass. In: New York: Mc-Graw Hill.
Brandes, J. A., Lee, C., Wakeham, S., Peterson, M., Jacobsen, C., Wirick, S., & Cody, G. (2004). Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray absorption near edge structure spectroscopy. Marine Chemistry, 92(1-4), 107-121.
Braun, A., Huggins, F. E., Shah, N., Chen, Y., Wirick, S., Mun, S. B., . . . Huffman, G. P. (2005). Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies––a comparative study on diesel soot with EELS and NEXAFS. Carbon, 43(1), 117-124.
Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2), 87-102.
Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493.
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., & Zech, W. (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma, 128(1), 116-129.
Brodowski, S., John, B., Flessa, H., & Amelung, W. (2006). Aggregate-occluded black carbon in soil. 57(4), 539-546.
Brodowski, S. B. (2004). Origin, function, and reactivity of black carbon in the arable soil environment.
Buss, W., Mašek, O., Graham, M., & Wüst, D. (2015). Inherent organic compounds in biochar–Their content, composition and potential toxic effects. Journal of Environmental Management, 156, 150-157.
Carpenter, S. R. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological applications, v. 8(no. 3), pp. 559-550-1998 v.1998 no.1993.
Chen, C.-P., Cheng, C.-H., Huang, Y.-H., Chen, C.-T., Lai, C.-M., Menyailo, O. V., . . . Yang, Y.-W. (2014). Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma, 232-234, 581-588.
Chen, C. L., Macarie, H., Ramirez, I., Olmos, A., Ong, S. L., Monroy, O., & Liu, W.-T. (2004). Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. 150(10), 3429-3440.
Cheng, C.-H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477-1488.
Cheng, C. H., Lehmann, J., Thies, J. E., & Burton, S. D. J. J. o. G. R. B. (2008). Stability of black carbon in soils across a climatic gradient. 113(G2).
Cody, G. D., Ade, H., Wirick, S., Mitchell, G. D., & Davis, A. (1998). Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis. Organic Geochemistry, 28(7), 441-455.
Cody, G. D., Botto, R. E., Ade, H., Behal, S., Disko, M., & Wirick, S. (1995). C-NEXAFS Microanalysis and Scanning X-ray Microscopy of Microheterogeneities in a High-Volatile A Bituminous Coal. Energy & Fuels, 9(1), 75-83.
Cope, M. J., & Chaloner, W. G. (1980). Fossil charcoal as evidence of past atmospheric composition. Nature, 283, 647.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184.
Crutzen, P. J., & Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. 250(4988), 1669-1678.
Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18(2), 590-598.
Daud, W. M. A. W., Ali, W. S. W., & Sulaiman, M. Z. (2001). Effect of carbonization temperature on the yield and porosity of char produced from palm shell. 76(12), 1281-1285.
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165.
Day, D., Evans, R. J., Lee, J. W., & Reicosky, D. (2005). Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy, 30(14), 2558-2579.
Demirbaş, A. (2000). Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 41(6), 633-646.
Demirbaş, A. (2001). Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conversion and Management, 42(10), 1229-1238.
Dittmar, T. (2015). Chapter 7 - Reasons Behind the Long-Term Stability of Dissolved Organic Matter. In D. A. Hansell & C. A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (Second Edition) (pp. 369-388). Boston: Academic Press.
Doubleday, N. C. (1999). Sediment Records of Biomass Burning and Global Change: J.S. Clark, H. Cachier, J.G. Goldammer and B. Stocks. Journal of Paleolimnology, 21(1), 107-109.
Dutta, T., Kwon, E., Bhattacharya, S. S., Jeon, B. H., Deep, A., Uchimiya, M., & Kim, K.-H. (2017). Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. 9(6), 990-1004.
Federation, W. E. (2008). Operation of Municipal Wastewater Treatment Plants: Water Environment Federation.
Feyer, V., Plekan, O., Richter, R., Coreno, M., de Simone, M., Prince, K. C., . . . Schirmer, J. (2010). Tautomerism in Cytosine and Uracil: A Theoretical and Experimental X-ray Absorption and Resonant Auger Study. The Journal of Physical Chemistry A, 114(37), 10270-10276.
Freudenberg, K., & Neish, A. C. (1968). Constitution and biosynthesis of lignin. Berlin: Springer-Verlag.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Bloh, W. v., Brovkin, V., . . . Zeng, N. (2006). Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. 19(14), 3337-3353.
Gadd, G. M., & Sariaslani, S. (2013). Advances in applied microbiology. Vol. 82 Vol. 82.
Gaunt, J. L., & Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Technology, 42(11), 4152-4158.
Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31(7), 669-678.
Golchin, A., Oades, J., Skjemstad, J., & Clarke, P. J. S. R. (1994). Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. 32(2), 285-309.
Goldberg, E. (1985). Black carbon in the environment. United States: Wiley and Sons,New York, NY.
Goldberg, E. D. (1985). Black carbon in the environment: properties and distribution. United States: John Wiley and Sons,New York, NY.
Gonzalo, Colpa, D. I., Habib, M. H. M., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110-119.
Gotić, M., & Musić, S. (2007). Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. Journal of Molecular Structure, 834-836, 445-453.
Graf, N., Yegen, E., Gross, T., Lippitz, A., Weigel, W., Krakert, S., . . . Unger, W. E. S. (2009). XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surface Science, 603(18), 2849-2860.
Green_The_Future. (2008). Anaerobic Digester: How It Works [Process].
Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., . . . Rullkötter, J. (2000). The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31(10), 945-958.
Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289.
Hernes, P., & Benner, R. (2003). Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments (Vol. 108).
Hernes, P. J., & Benner, R. (2003). Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. 108(C9).
Hoboken, N. J. (2007). Lignin. In Kirk‐Othmer Encyclopedia of Chemical Technology.
IPCC. (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. 4, 2007.
Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304.
Jenkinson, D. S., & Ayanaba, A. (1977). Decomposition of Carbon-14 Labeled Plant Material Under Tropical Conditions1. 41(5), 912-915.
Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., & Powlson, D. J. G. C. B. (2005). Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. 11(1), 154-166.
Kamel, M., Hanafi, M., & Bassiouni, M. (1991). Inhibition of elastase enzyme release from human polymorphonuclear leukocytes by N-acetyl-galactosamine and N-acetyl-glucosamine. Clinical and experimental rheumatology, 9(1), 17-21.
Katyal, S., Thambimuthu, K., & Valix, M. (2003). Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renewable Energy, 28(5), 713-725.
Kawamoto, K., Ishimaru, K., & Imamura, Y. (2005). Reactivity of wood charcoal with ozone. Journal of Wood Science, 51(1), 66-72.
Kennedy, I. M. (1997). Models of soot formation and oxidation. Progress in Energy and Combustion Science, 23(2), 95-132.
Keoleian, G. A., & Volk, T. A. J. B. (2005). Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. 24(5-6), 385-406.
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Kilambi, S., & Kadam, K. L. (2014). Compositions comprising lignin. In: Google Patents.
Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298.
Komarek, E. (1972). Ancient fires. Paper presented at the Proc. Tall Timbers Fire Ecol. Conf.
Koyama, T. (1963). Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. 68(13), 3971-3973.
Kuhlbusch, T. A., & Crutzen, P. J. (1996). Black carbon, the global carbon cycle, and atmospheric carbon dioxide.
Kuhlbusch, T. A. J. (1998a). Black Carbon and the Carbon Cycle. 280(5371), 1903-1904.
Kuhlbusch, T. A. J. (1998b). Black Carbon and the Carbon Cycle. Science, 280(5371), 1903.
Kuhlbusch, T. A. J., & Crutzen, P. J. (1995). Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. 9(4), 491-501.
Kuroda, K.-i., Ozawa, T., & Ueno, T. (2001). Characterization of Sago Palm (Metroxylon sagu) Lignin by Analytical Pyrolysis. Journal of Agricultural and Food Chemistry, 49(4), 1840-1847.
Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41(2), 210-219.
Kwon, E. E., Jeon, E.-C., Castaldi, M. J., & Jeon, Y. J. (2013). Effect of Carbon Dioxide on the Thermal Degradation of Lignocellulosic Biomass. Environmental Science & Technology, 47(18), 10541-10547.
Lebo, S. E., Gargulak, J. D., & McNally, T. J. (2002). Lignin. In Encyclopedia of Polymer Science and Technology.
Lehmann, J. (2007a). Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387.
Lehmann, J. (2007b). A handful of carbon. Nature, 447, 143.
Lehmann, J., Gaunt, J., & Rondon, M. (2006a). Bio-char sequestration in terrestrial ecosystems–a review. 11(2), 403-427.
Lehmann, J., Gaunt, J., & Rondon, M. (2006b). Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427.
Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Biochar for environmental management. Science and technology.
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., . . . Jacobsen, C. (2005a). Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochemical Cycles, 19(1).
Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., . . . Jacobsen, C. J. G. B. C. (2005b). Near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy for mapping nano‐scale distribution of organic carbon forms in soil: Application to black carbon particles. 19(1).
Lehmann, J., Pereira da Silva, J., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343-357.
Lehmann, J., & Rondon, M. (2005). Bio-char soil management on highly weathered soils in the humid tropics.
Lehmann, J., & Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics.
Lehmann, J., Rondon, M., Greenwood, J., Nehls, T., Steiner, C., & Glaser, B. (2002). Slash-and-char-a feasible alternative for soil fertility management in the central Amazon.
Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., . . . Krull, E. (2008). Australian climate–carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 1(12), 832-835.
Lemieux, P. M., Lutes, C. C., & Santoianni, D. A. (2004). Emissions of organic air toxics from open burning: a comprehensive review. Progress in Energy and Combustion Science, 30(1), 1-32.
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., . . . Neves, E. G. (2006). Black Carbon Increases Cation Exchange Capacity in Soils. Soil Science Society of America Journal, 70(5).
Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., . . . Wirick, S. (2008). Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta, 72(24), 6069-6078.
Liang, B., Wang, C., Solomon, D., Kinyangi, J., Luizăo, F. J., Wirick, S., . . . Lehmann, J. (2013). Oxidation is key for black carbon surface functionality and nutrient retention in Amazon anthrosols. British Journal of Environment and Climate Change, 3(1), 9-23.
Lin, Y. S., Lu, K. T., Lee, Y. T., Tseng, C. M., Ni, C. K., & Liu, C. L. (2014). Near-edge X-ray absorption fine structure spectra and site-selective dissociation of phenol. J Phys Chem A, 118(9), 1601-1609.
Lindh, A. E. (1921). Zur Kenntnis des Röntgenabsorptionsspektrums von Chlor. Zeitschrift für Physik, 6(1), 303-310.
Ludwig, C. H., & Sarkanen, K. (1971). Lignins: occurrence, formation, structure and reactions: Wiley-Interscience New York.
MacDonald, G. M., Larsen, C. P. S., Szeicz, J. M., & Moser, K. A. (1991). The reconstruction of boreal forest fire history from lake sediments: A comparison of charcoal, pollen, sedimentological, and geochemical indices. Quaternary Science Reviews, 10(1), 53-71.
Mann, C. C. (2002). The Real Dirt on Rainforest Fertility. Science, 297(5583), 920-923.
Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., & Ralph, J. (2009). Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Current Biology, 19(2), 169-175.
Masiello, C. A. (2004). New directions in black carbon organic geochemistry. Marine Chemistry, 92(1-4), 201-213.
Masiello, C. A., & Druffel, E. R. M. (1998). Black Carbon in Deep-Sea Sediments. 280(5371), 1911-1913.
Matteson, G. C., & Jenkins, B. M. (2007). Food and processing residues in California: Resource assessment and potential for power generation. Bioresource Technology, 98(16), 3098-3105.
Metzger, J. O. J. A. C. I. E. (2006). Production of liquid hydrocarbons from biomass. 45(5), 696-698.
Nishimiya, K., Hata, T., Imamura, Y., & Ishihara, S. (1998). Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. Journal of Wood Science, 44(1), 56-61.
NNFCC. (2011). NNFCC Renewable Fuels and Energy Factsheet: Anaerobic Digestion.
Oji, H., Mitsumoto, R., Ito, E., Ishii, H., Ouchi, Y., Seki, K., & Kosugi, N. (1996). Core hole effect in NEXAFS spectroscopy of aromatic hydrocarbons: chrysene, perylene and coronene. Journal of Electron Spectroscopy and Related Phenomena, 78, 383-386.
Palm, C. A., & Sanchez, P. A. D. o. S. S., North Carolina State University, Box 7619, Raleigh, NC 27695 (USA)). (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. v. 23.
Pamatmat, M. M., & Bhagwat, A. M. (1973). ANAEROBIC METABOLISM IN LAKE WASHINGTON SEDIMENTS1. 18(4), 611-627.
Patterson, W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6(1), 3-23.
Patzek, T. W., & Pimentel, D. J. B. (2005). Thermodynamics of energy production from biomass. 24(5-6), 327-364.
Pellerin, B. A., Hernes, P. J., Saraceno, J., Spencer, R. G. M., & Bergamaschi, B. A. (2010). Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors. Journal of Environmental Quality, 39(3), 946-954.
Penner, J. E., Eddleman, H., & Novakov, T. (1993). Towards the development of a global inventory for black carbon emissions. Atmospheric Environment. Part A. General Topics, 27(8), 1277-1295.
Pessenda, L. C. R., Gouveia, S. E. M., & Aravena, R. (2001). Radiocarbon Dating of Total Soil Organic Matter and Humin Fraction and Its Comparison with 14C Ages of Fossil Charcoal. Radiocarbon, 43(2B), 595-601.
Peterson, M., Edgar, N., Cita, M., Gartner Jr, S., Goll, R., Migrini, C., & Von der Borch, C. J. V. I. (1970). Initial reports of the Deep-Sea Drilling Project, 2: US Government Printing Office.
Petoral, R. M., & Uvdal, K. (2003). XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold. Journal of Electron Spectroscopy and Related Phenomena, 128(2), 159-164.
Piquer, C., Laguna-Marco, M. A., Roca, A. G., Boada, R., Guglieri, C., & Chaboy, J. (2014). Fe K-Edge X-ray Absorption Spectroscopy Study of Nanosized Nominal Magnetite. The Journal of Physical Chemistry C, 118(2), 1332-1346.
Plekan, O., Feyer, V., Richter, R., Coreno, M., Vall-llosera, G., Prince, K. C., . . . Schirmer, J. (2009). An Experimental and Theoretical Core-Level Study of Tautomerism in Guanine. The Journal of Physical Chemistry A, 113(33), 9376-9385.
Raison, R. J. (1979). Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant and Soil, 51(1), 73-108.
Redell, C. J., Elmore, A. C., Burken, J. G., & Stringer, R. D. (2011). Waterjet injection of powdered activated carbon for sediment remediation. Journal of Soils and Sediments, 11(6), 1115.
Residua. (2007). Anaerobic digestion.
Roe, A. L., Schneider, D. J., Mayer, R. J., Pyrz, J. W., Widom, J., & Que, L. (1984). X-ray absorption spectroscopy of iron-tyrosinate proteins. Journal of the American Chemical Society, 106(6), 1676-1681.
Rondon, M., Ramirez, J., & Lehmann, J. (2005). Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. Paper presented at the Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry.
Saito, M., & Marumoto, T. (2002). Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. In S. E. Smith & F. A. Smith (Eds.), Diversity and Integration in Mycorrhizas: Proceedings of the 3rd International Conference on Mycorrhizas (ICOM3) Adelaide, Australia, 8–13 July 2001 (pp. 273-279). Dordrecht: Springer Netherlands.
Samuel, N. T., Lee, C.-Y., Gamble, L. J., Fischer, D. A., & Castner, D. G. (2006). NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers. Journal of Electron Spectroscopy and Related Phenomena, 152(3), 134-142.
Schmidt, M., S Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., . . . Trumbore, S. (2011). Persistence of Soil Organic Matter as an Ecosystem Property (Vol. 478).
Schmidt, M. W. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777-793.
Scott, A. C. (1989). Observations on the nature and origin of fusain. International Journal of Coal Geology, 12(1), 443-475.
Seiler, W., & Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207-247.
Sergides, C. A., Jassim, J. A., Chughtai, A. R., & Smith, D. M. (1987). The Structure of Hexane Soot. Part III: Ozonation Studies. Applied Spectroscopy, 41(3), 482-492.
Shafizadeh, F. (1984). The chemistry of pyrolysis and combustion. The chemistry of solid wood, 489-529.
Shindo, H. (1991). Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Science and Plant Nutrition, 37(4), 651-657.
Shinogi, Y., Yoshida, H., Koizumi, T., Yamaoka, M., & Saito, T. (2003). Basic characteristics of low-temperature carbon products from waste sludge. Advances in Environmental Research, 7(3), 661-665.
Shneour, E. A. (1966). Oxidation of Graphitic Carbon in Certain Soils. 151(3713), 991-992.
Siegbahn, M. (1931). Spektroskopie der röntgenstrahlen.
Simoneit, B. R. T. (2002). Biomass burning — a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129-162.
Sleat, R., & Mah, R. (1987). Hydrolytic bacteria In Anaerobic digestion of biomass. In: London: Elsevier Applied Science.
Smith, D. M., Griffin, J. J., & Goldberg, E. D. (1973). Elemental Carbon in Marine Sediments: a Baseline for Burning. Nature, 241, 268.
Smithson, P. A. (2002). IPCC, 2001: climate change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Da. International Journal of Climatology, 22(9), 1144-1144.
Solomon, D., Lehmann, J., Kinyangi, J., Liang, B., & Schäfer, T. (2005). Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils. Soil Science Society of America Journal, 69, 107-119.
Sombroek, W., Ruivo, M. D. L., Fearnside, P. M., Glaser, B., & Lehmann, J. (2003). Amazonian Dark Earths as Carbon Stores and Sinks. In J. Lehmann, D. C. Kern, B. Glaser, & W. I. Wodos (Eds.), Amazonian Dark Earths: Origin Properties Management (pp. 125-139). Dordrecht: Springer Netherlands.
Sombroek, W. G., Nachtergaele, F. O., & Hebel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils: ; %JAmbio (Journal of the Human Environment, Research and Management); (Sweden).
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., . . . McAloon, A. J. J. J. o. e. q. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. 41(4), 973-989.
Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869-882.
Tien, M., & Kirk, T. K. (1983). Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. 221(4611), 661-663.
Trumbore, S. E., Chadwick, O. A., & Amundson, R. (1996). Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. 272(5260), 393-396.
Turner, J. A. (1999). A Realizable Renewable Energy Future. 285(5428), 687-689.
Vall-llosera, G., Gao, B., Kivimäki, A., Coreno, M., Álvarez Ruiz, J., de Simone, M., . . . Rachlew, E. (2008). The C 1s and N 1s near edge x-ray absorption fine structure spectra of five azabenzenes in the gas phase. Journal of Chemical Physics, 128(4), 044316-044311-044316-044312.
Vane, C. H., Drage, T. C., & Snape, C. E. (2003). Biodegradation of Oak (Quercus alba) Wood during Growth of the Shiitake Mushroom (Lentinula edodes):  A Molecular Approach. Journal of Agricultural and Food Chemistry, 51(4), 947-956.
Vane, C. H., Drage, T. C., & Snape, C. E. (2006). Bark decay by the white-rot fungus Lentinula edodes: Polysaccharide loss, lignin resistance and the unmasking of suberin. International Biodeterioration & Biodegradation, 57(1), 14-23.
Verardo, D. J., & Ruddiman, W. F. (1996). Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance. Geology, 24(9), 855-857.
Warneck, P. J. N. Y. (1988). Chemistry of the Natural Atmosphere Academic.
Weng, Y. T., Wang, C. C., Chiang, C. C., Tsai, H., Song, Y. F., Huang, S. T., & Liang, B. (2018). In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography. Biogeosciences, 15(10), 3133-3142.
White, C., Ltd., B., Farm, B., Road, S., Feltwell, & Norfolk. (2007). Anaerobic digestion.
White, G. F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A. C., Marshall, M. J., . . . Clarke, T. A. (2013). Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci U S A, 110(16), 6346-6351.
Wilke, M., Farges, F., Petit, P.-E., Brown, G. E., & Martin, F. (2001). Oxidation state and coordination of Fe in minerals: An FeK-XANES spectroscopic study. American Mineralogist, 86(5-6), 714-730.
Wu, J.-H., Wu, F.-Y., Chuang, H.-P., Chen, W.-Y., Huang, H.-J., Chen, S.-H., & Liu, W.-T. (2013). Community and Proteomic Analysis of Methanogenic Consortia Degrading Terephthalate. 79(1), 105-112.
Yin, B., Crowley, D., Sparovek, G., De Melo, W. J., & Borneman, J. (2000). Bacterial Functional Redundancy along a Soil Reclamation Gradient. 66(10), 4361-4365.
Yu, F., Deng, S., Chen, P., Liu, Y., Wan, Y., Olson, A., . . . Ruan, R. (2007). Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover. In J. R. Mielenz, K. T. Klasson, W. S. Adney, & J. D. McMillan (Eds.), Applied Biochemistry and Biotecnology: The Twenty-Eighth Symposium Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and Chemicals Held April 30–May 3, 2006, in Nashville, Tennessee (pp. 957-970). Totowa, NJ: Humana Press.
Zeng, L., Qin, C., Wang, L., & Li, W. (2011). Volatile compounds formed from the pyrolysis of chitosan. Carbohydrate Polymers, 83(4), 1553-1557.
Zhao, J. (1994). Ferrihydrite: Surface Structure and its Effects on Phase Transformation.
石家興. (2010). 沼氣能源與整合型農業之開發及產業化應用. 農業生技產業季刊(24), 47-52.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw