進階搜尋


下載電子全文  
系統識別號 U0026-2001201512410400
論文名稱(中文) 奈米結構下具有/無表面電漿子之光學特性轉換
論文名稱(英文) Transformation of Optical Properties between Plasmonic and Non-plasmonic Nano-structures
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 1
出版年 104
研究生(中文) 蘇于倫
研究生(英文) Yu-Lun Su
學號 L78961018
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-張世慧
口試委員-陳顯禎
口試委員-林俊宏
口試委員-方怡欽
口試委員-曾雪峰
中文關鍵字 表面電漿  單狹縫  奈米光學 
英文關鍵字 Surface Plasmons  Single slit  nanophotonics 
學科別分類
中文摘要 自從Ebbsen率先發表奈米金屬薄膜孔洞陣列的異常穿透效率的研究後,表面電漿效應就吸引了需多的注意。表面電漿對於穿透率的增強在過去一直被多方爭論著,在孔洞陣列的結構,表面電漿在於克服次波長孔洞的截止條件扮演著一個關鍵的角色。且表面電漿色散曲線才能正確的解釋穿透頻譜。然而,在二維單狹縫的情況,有許多關於表面電漿造成的負面貢獻的研究。儘管已經有許多利用表面電漿子效應的狹縫結構應用,如生物探測裝置、波導率波器、奈米表面電漿子雷射等等。但對於表面電漿子於單狹縫如何穿透的基本光學特性還沒有被完全理解。
不同於傳統上強調表面電漿子的效應,本論文將著重探討在二維單狹縫結構下,有/無表面電漿子對其穿透率特性的比較。我們先將討論穿透共振下的情形及其物理意義。接著,我們將延伸探討在非共振條件情況下,更廣波段穿透率的比較。在共振條件時,有/無表面電漿子兩者在二維單狹縫相同共振階數的模態中,顯示相類似的近場現象,且他們的穿透率共振波長可以經由簡單的表面電漿色散曲線相互轉換。值得一提的是,由Babinet原理得知二維單狹縫結構並不具有其互補結構的局域性表面電漿子共振模態,來增益穿透率。Fabry-Perot共振、狹縫的邊界、波導的色散才是決定金屬二維單狹縫穿透率特性的主要部分
更進一步的,半無限長狹縫進/出口邊界之複數穿透及反射係數將可以用來重建整個單狹縫的頻譜。我們發現在有/無表面電漿子兩材料之等效波長下,其複數的反射係數在這兩材料為相似的數值。加上Fabry-Perot模型,結合波導色散的效應後可用來將這兩個材料的穿透率頻譜作相互的轉換。同樣的,此理論也可適用於有介電質基板及週期狹縫陣列的情形。更進一步利用兩個材料間色散轉換的特性,我們可以等比例改變其中一種材料其結構的尺寸,成功實現另一種材料所能達成的光聚焦透鏡特性及單狹縫之光學幻象技術。
其他進一步的應用如Mach-Zehnder干涉儀及海膽形奈米顆粒結構的表面電漿子光學特性將在本論文中繼續討論。而海膽形結構圓柱的形狀、大小及柱與柱間的角度對於吸收與散射頻譜的影響,我們發現可用簡單的庫倫位能模型來解釋之。
英文摘要 Transmission through nano apertures have attracted much attention since Ebbsen’s first report on the extraordinary transmission through nano hole arrays in metal films. The role of surface plasmons in the enhanced transmission has been a debate over the past decade. In the hole-array structure, the surface plasmons indeed play a crucial role to overcome the cutoff limitation set by the sub-wavelength apertures. And the surface plasmon dispersion relation must be taken into account for the correct interpretation of measured transmission spectra. However, in slit structures, there have been many reports on the negative contributions by surface plasmons. Despite numerous successes in applying slit structure for bio-sensors, waveguide filters, nano plasmonic lasers, etc., there still lack detailed analysis and intuitive interpretation on the transmission behavior of a simple structure such as the single nano slit.
In contrast to conventional emphases on plasmonic effects, similar transmission properties between a plasmonic and non-plasmonic 2D single slit are demonstrated in this thesis. A special case of resonant transmissions and the underlying physics of the similarities are explored. Extension to non-resonant transmission and the general transformation are proposed. At resonant transmission, plasmonic and non-plasmonic single slits exhibit similar near-field mode at their corresponding resonant wavelengths. Their resonant transmission wavelengths can be transformed via a simple mapping with surface plasmon dispersion relation. Revisit of the Babinet’s principle implies that localized surface plasmon resonances play no role in the enhanced transmission of a 2D single slit. Fabry-Perot resonance, funneling at slit end faces and waveguide dispersion dominate the resonant transmission properties.
To further extend the mapping for non-resonant condition, complex reflection and transmission coefficients at the end faces of a semi-infinite slit are analyzed to reconstruct the whole transmission spectra. The complex reflection coefficients are found similar at the same effective wavelength for both plasmonic and non-plasmonic cases. The reconstructed spectrum by a Fabry-Perot model matches the transmission spectrum of a non-plasmonic slit and can be transformed into that of a plasmonic case by wavelength stretching with plasmonic waveguide dispersion. Same mapping method applies for a single slit with substrate and periodic case. Furthermore, the optical property of a plasmonic slit can be achieved by a non-plasmonic slit via dimension scaling. The focusing lens effect of a plasmonic slit array can be mimicked by a non-plasmonic slit array with dimension scaling. The unified transmission properties of plasmonic and non-plasmonic 2D single slits can simplify the design of slit structures for plasmonic applications.
Other plasmonic nanostructure such as Mach-Zehnder Interferometers and sea-urchin like 3D multi-branch nanoparticles were discussed in the thesis. The influence of branch shapes, size, and angle in-between for the extinction spectrum of the multi-branch nanoparticles were explained by a simple Coulomb potential model.
論文目次 Contents

口試合格證明 I
中文摘要 II
Abstract IV
誌謝 VI
Content VII
Figure Captions IX
Chapter 1 Surface Plasmon 1
1-1 Surface Plasmon 3
1-2 Theory of Surface Plasmon – Interface 3
1-3 Theory of Surface Plasmon – three layered structure 8
1-4 Single narrow slit: the theoretical solution for PEC 13
1-5 Single narrow slit: The red wavelength shift 17
1-6 Finite-difference time-domain (FDTD) method 18
Chapter 2 Mapping of Transmission Spectrum between Plasmonic and Non-plasmonic Single Slit I: Resonant Transmission 21
2-1 Introduction 21
2-2 Computational method 25
2-3 Resonant transmission through a single slit 27
2-4 Universal Phase Shift 33
2-5 Conclusion 40
Chapter 3 Mapping of Transmission Spectrum between Plasmonic and Non-plasmonic Single Slit II: Non-resonant Transmission 41
3-1 Introduction 42
3-2 FP transmission spectrum 44
3-3 Complex reflection coefficient at slit interface 47
3-4 Transformation of transmission spectra from PEC to metallic single slits 51
3-5 Conculsion 59
Chapter 4 Plasmonic Mach-Zehnder Interferometers based on Metallic Nanochannel Waveguides for Biosensor Applications 61
4-1 Introduction 61
4-2 What is Mach-Zehnder interferometer s 62
4-3 Theoretical and simulation discussion 63
4-4 Conclusion 65
Chapter 5 Plasmonic Resonant Modes of highly-symmetric multi-branches nanostructures 67
5-1 Introduction 67
5-2 Computational method 68
5-3 Cylindrical, triangular and hexagonal nano-rods 69
5-4 The optics behavior for convex and concave structures 73
5-5 Symmetrically tetra-pod structures 76
5-6 Optics behavior for internal angle varies 79
5-7 Highly symmetrical multi-brunch sea-urchins structures 83
5-8 Conclusion 87
Chapter 6 Conclusion and future outlook 88
Reference 91
參考文獻 Reference
1. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
2. Y. Qi, J. Miao, S. Hong, and M. M. Tentzeris, “Characterization of extraordinary transmission for a single subwavelength slit: a Fabry-Perot-like formula model,” IEEE Trans. Microwave Theory Tech. 58, 3657-3665 (2010).
3. B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010).
4. B. Sturman, E. Podivilov, and M. Gorkunov, “Elementary processes of light transformation for slit structures in real and perfect metals,” Photonics and Nanostructures – Fundamentals and Applications 10, 409–415 (2012).
5. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optic,” Nature 424, 824-830 (2003)
7. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13, 3150-3165 (2005)
8. Pendry , “Magnetism from condcutors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech 47(11) ,2075(1999)
9. C.F. Bohren, D.R. Huffman, Absorption and Scattering by Small Particles (Wiley-Interscience, New York, 1983).
10. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000)
11. S. H. Chang and Y. L. Su, “Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission,” J. Opt. Soc. Am. B, 32(1), 38-44 (2015)
12. S. H. Chang and Y. L. Su, “Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonan transmission,” J. Opt. Soc. Am. B, 32(1), 45-51 (2015)
13. H. Raether, Surface Plasmons (Springer, New York, 1998).
14. S. V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, and O. Samek, “Enhanced transmission versus localization of a light pulse by a subwavelength metal slit,” Phys. Rev. B 70, 195428 (2004).
15. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601-5603 (2001).
16. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
17. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
18. H. Liu and Ph. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728-731 (2008).
19. F. van Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411-414 (2012).
20. H. Shin, P.B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005)
21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
22. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
23. H.G. Booker, “Slot aerials and their relation to complementary wire aerials Babinet’s principle,” IEEE J. Electrical Engineers PartIIIA Radiation 93(4), 620 (1946)
24. B. Ogut, R. Vogelgesang, W. Sigle, N. Talebi, C.T. Koch, and P. A. van Aken, “ Hybridized metal slit eigenmodes as an illustration of Babinet’s Principle,” ACS Nano 5(8), 6701 (2011)
25. F. Yang, and J.R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002)
26. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 2nd Edition (Artech House, Boston, 2000).
28. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442-2446 (2004).
29. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polmanm, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
30. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express 15, 13669-13674 (2007).
31. S. Astileana, Ph. Lalanneb, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265-273 (2000).
32. Y. Xi, Y. S. Jung, and H.K. Kim, “Interaction of light with a metal wedge: the role of diffraction in shaping energy flow,” Opt. Express 18, 2588-2600 (2010)
33. M. F. Chen and H. C. Chang, “Plasmonic states from visible light to microwaves,” IEEE Journal of Quantum Electronics 45, 1558-1562 (2009).
34. S.-H Chang and Y.-L. Su, “Mapping of Transmission Spectrum between Plasmonic and Non-plasmonic Single Slit I: Resonant Transmission,” J. Opt. Soc. Am. B 32, 38-44 (2015)
35. G. Nemova, A. V. Kabashin, and R. Kashyap, “Surface plasmon-polariton Mach-Zehnder refractive index sensor,” J. Opt. Soc. Am. B 25, 1673-1677 (2008).
36. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511. (2008).
37. X. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874-2876 (2008).
38. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004)
39. S. Ishii, A. V. Kildishev, V. M. Shalaev, K. P. Chen, and V. P. Drachev, “Metal nanoslit lenses with polarization-selective design,” Opt. Lett. 36, 451-453 (2011).
40. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629-632 (2009).
41. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529-16537 (2008).
42. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85,085416 (2012).
43. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27, 1947-1956 (2010).
44. M.A. Seo, H.R. Park, S.M. Koo, D.J. Park, J.H. Kang, O.K. Suwal, S.S. Choi, P.C.M. Planken, G.S. Park, N.K. Park, Q.H. Park and D.S. Kim, “THz field enhancement by a metallic nanoslit operating beyond the skin depth limit, Nature Photonics 3, 152 (2009)
45. F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theory Tech. 58(1), 105–115 (2010).
46. B. Sepulveda, J. Sanchez del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Opt. A: Pure Appl. Opt. 8,561-566 (2006)
47. P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor," Opt. Express 14, 7063-7072 (2006)
48. T. R. Jensen ,M. D. Malinsky , C. L. Haynes , and R. P. Van Duyne, "Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles", J. Phys. Chem. B, 104, 10549 (2000)
49. J. R, C. YC, Hao E, Métraux GS, Schatz GC, Mirkin CA. “Controlling anisotropic nanoparticle growth through plasmon excitation.”, Nature, 425, 487–490 (2003)
50. W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures,"" Opt. Express 18, 843-853 (2010)
51. L. J. Sherry, S. Chang, B.J. Wiley, Y. Xia, G. C. Schatz, and R. P. Van Duyne. "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes," Nano. Lett. 5, 2034-2038 (2005)
52. Y. H. Su, W. H. Lai, W.Y. Chen, M. H. Hon, S.H. Chang, “Surface plasmon resonance of gold nano-sea-urchin,Appl.” Appl. Phys. Lett. 90, 181905 (2007)
53. Berkovitch, N., Ginzburg, P. & Orenstein, M. “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared.” Nano Letters 10, 1405-1408 (2010).
54. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72, 155412 (2005)
55. Y. H. Su, S. L Tu, S. W. Tseng, Y. C. Chang, S. H. Change and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins” Nanoscale, 2, 2639-2646 (2010)
56. F. W. King, R.P. Van Duyne, G.C. Schatz, J. Chem. "Theory of Raman Scattering by Molecules Adsorbed on Electrode Surfaces", Phys. ,69, 4472-4481 (1978).
57. M. A. Schmidt and P. S. Russell, "Long-range spiralling surface plasmon modes on metallic nanowires," Opt. Express 16, 13617-13623 (2008)
58. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Let, 98, 266802, (2007)
59. C. L. Du, Y. M. You, X. J. Zhang, K. Johnson, and Z. X. Shen, "Polarization-Dependent Confocal Imaging of Individual Ag Nanorods and Nanoparticles, "Plasmonics, 4, 217-22. (2009)
60. X. Huang, S. Neretina, M.A. El-Sayed, "Gold Nanorods: from Synthesis and Properties to Biological and Biomedical Applications," Adv. Mater. 21, 4880-491 (2009)
61. T. J. Davis, K. C. Vernon, and D. E. Gómez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express 17, 23655-23663 (2009)
62. A. V. Kabashin et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials 8, 867 - 871 (2009).
63. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood, "Large longitudinal electric fields (Ez) in silicon nanowire waveguides," Opt. Express 17, 2797-2804 (2009)
64. C. P. Huang, X. G. Yin, H. Huang, and Y. Y. Zhu. “Study of plasmon resonance in a gold nanorod with an LC circuit model” Opt. Express 17, 6407-6413 (2009)
65. C. F. Bohren, D.R. Huffman, “Absorption and Scattering of Light by Small Particles”, (Willey. New York. 1998)
66. O. M. Bakr, B. H. Wunsch, and F. Stellacci "High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles," Chem. Mater. 18 , 3297–3301 (2006)
67. E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and Optical Properties of "Branched" Gold Nanocrystals," Nano Letters, 4, (2), 327-330. (2004)
68. Liu, H. T., Alivisatos, A. P., Preparation of asymmetric nanostructures through site selective modification of tetrapods. Nano Letters, 4, (12), 2397-2401 (2004)
69. N. Verellen, P. V. Dorpe, D. Vercruysse, g. A. E. Vandenbosch, and V. V. Moshchalkov, "Dark and bright localized surface plasmons in nanocrosses," Opt. Express 19, 11034-11051 (2011)
70. D. Macías, P.-M. Adam, V. Ruíz-Cortés, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, "Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties," Opt. Express 20, 13146-13163 (2012)
71. R. R. Oliveros and J. Sánchez-Gil, "Gold nanostars as thermoplasmonic nanoparticles for optical heating," Opt. Express 20, 621-626 (2012)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw