進階搜尋


下載電子全文  
系統識別號 U0026-2001201014440500
論文名稱(中文) 靜電式驅動三軸微型陀螺儀之設計與動態分析
論文名稱(英文) Design and Dynamic Analysis of Electrostatic-drive Three-axes Micro-gyroscope
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 98
學期 1
出版年 99
研究生(中文) 蘇中源
研究生(英文) Chung-Yang Sue
學號 n1894120
學位類別 博士
語文別 英文
論文頁數 103頁
口試委員 口試委員-趙健祥
口試委員-劉建惟
口試委員-羅裕龍
口試委員-陳鐵城
指導教授-蔡南全
中文關鍵字 三軸微型陀螺儀  靈敏度  正交誤差  科氏效應 
英文關鍵字 Tri-axes Micro-gyroscope  Sensitivity  Quadrature Error  Coriolis Effect 
學科別分類
中文摘要 本論文主要目的為開發一靜電式三軸微型陀螺儀。 藉由機械結構設計,可使微陀螺儀驅動模態以及感測模態之間的耦合效應大幅地降低。 此外,由於本論文所提出之微陀螺儀為平面結構所構成,因此藉由平面的微製程技術即可將微陀螺儀實現,並偵測空間中三個軸向角速度。
本論文首先針對所提出之微陀螺儀之設計概念以及作用原理加以說明,並對微陀螺儀之性能作一系統化之分析。 本論文亦針對各種微陀螺儀性能指標以及系統參數之間的關係加以探討。 藉由分析之結果,提出改善微陀螺儀系統頻寬以及靈敏度之方法。
此外,本論文亦探討了由製程缺陷、柯氏效應以及外加時變角速率所造成之正交誤差與動態耦合。 本論文提出一整合式控制補償系統。 藉由理論模擬驗證,此方法可以有效地抑制製程缺陷與動態耦合,有效改善並提升微陀螺儀的性能。
最後本論文由實驗初步驗證,所製作之微陀螺儀在X, Y以及Z軸方向對於角速率感測的靈敏度分別為: 50.4, 60.3 以及71.2 , 解析度分別為: 0.72 , 1.43 以及0.42 , 交越軸向的靈敏度分別為: 22%, 9% 以及1.84%。 訊號-雜訊比可到達: 59.3, 13.8, 以及140.1。 藉由實驗結果可知,本論文所提出之三軸式微陀螺儀,可偵測空間中三軸向之角速率,並且大幅地降低驅動模態與感測模態間的耦合效應。
英文摘要 In this dissertation, a planar micro-machined three-axis gyroscope in decoupled-mode mechanical structure is presented. Three orthogonal -axis angular rates, pitch, yaw and row, can be detected simultaneously by the proposed micro-gyroscope. The coupling effect of the tri-axes angular rates due to unnecessary Coriolis accelerations and nonlinearity of the high frequency modes can be efficiently reduced by the decoupled mechanical structure design.
At first, the natural frequencies of sense modes are successfully tuned to match the natural frequency of drive mode by polarization voltages onto the associated sensing electrodes so that the inherent bias frequency at each sense mode can be removed.
Secondly, the undesired cross-axis coupling effects between drive mode and sense modes are substantially suppressed by the cooperation of mechanical design and an integrated Automatic Gain Control (AGC) loop for drive mode. For highly reliable tuning to ensure resonance, the AGC and PLL (Phase Lock Loop) are integrated with a PID (Proportional, Integral and Differential) feedback controller to eliminate steady-state errors and overshoots. The performance of the micro-gyroscope is also analyzed and evaluated by experiments. The achieved scale factors (the reflected voltage to the detected angular rate) of the proposed tri-axes micro-gyroscope are 50.4 , 60.3 , and 71.2 for X-, Y- and Z-axes (principal axis: Z-axis) respectively. The resulted resolutions are about 0.72 , 1.43 and 0.42 for X-, Y- and Z-axes respectively. The Cross-axis sensitivities are reduced down to 22%, 9% and 1.84% for X-, Y- and Z-axes respectively. S/N ratios reach 59.3, 13.8, and 140.1 for X-, Y- and Z-axes respectively. The experimental results illustrates that the gyroscope exhibits superior to detect exerted angular rate, in addition to successful suppression upon the cross-axis perturbation between drive mode and sense modes. Principle-axis sensitivity, resolution and floor noise are all numerically evaluated. In addition, cross-axis sensitivity, Signal-to-Noise Ratio (SNR) and measurement error are investigated. Finally, a few comparisons with the other typical types of gyroscopes are reported.
論文目次 摘要…...………………………………………………………………………. I
Abstract……………………………………………………………............... III
致謝…………………………………………………………………………... V
1. Introduction………………………………………………………………. 1
1.1 Micro-machined Gyroscopes Versus Conventional Gyroscopes……. 1
1.2 Applications of Micro-machined Gyroscope………………………... 2
1.3 Review of MEMS-based Gyroscopes……………………………….. 2
1.4 Research Motivations and Objectives……………………………….. 6
1.5 Outline of Dissertation………………………………………………. 7
2. Design and Operation Principle………………………………………..... 9
2.1 Tri-axes Angular Rate Detection for Decoupled Measurement....…... 9
2.2 Equation of Motion………………………………………………… 11
2.3 Design of Mechanical Flexural Springs…………………………… 13
2.4 Design of Electrostatic Actuator and Capacitive Sensor…………... 15
2.5 Conclusions……………………………………………………...… 21
3. Performance Evaluation of Tri-axes Micro-gyroscope………….......... 29
3.1 Mode Shape and Natural Frequency by Modal Analysis…….......... 30
3.2 Mechanical Sensitivity Analysis…………………………………… 31
3.3 Electrical Sensitivity Analysis……………………………………... 33
3.4 Sensitivity and Quality Factor Analysis…………………………… 38
3.5 Bandwidth and Quality Factor Analysis…………………………… 38
3.6 Trade-off among Performance Indices……………………………... 39
3.7 Bandwidth of Z-axis Sense Mode Enhanced by Distributed Proof Mass Array………………………………………………………… 39
3.8 Conclusions……………………………………………………....... 41
4. Integrated Feedback Control Loop……………………………………. 48
4.1 Objective of Feedback Control for Micro-gyroscope……………... 48
4.2 Modified Disturbance Estimation Observer……………………….. 52
4.3 Estimation on Time-varying Angular Rate……………………….... 55
4.4 Integrated Feedback Control Loop………………………………… 58
4.5 Conclusions………………………………………………………... 60
5. Fabrication and Experimental Results………………………………… 66
5.1 Micro-fabrication Processes……………………………………….. 67
5.2 Resonance Characterization……………………………………….. 69
5.3 Integrated AGC and PID Loops for Drive Mode…………………... 70
5.4 Performances Evaluation…………………………………………... 72
5.5 Measurement Error and Signal-to-Noise Ratio……………………. 76
5.6 Conclusions………………………………………………………... 80
6. Conclusions and Future Works………………………………………… 92
6.1 Discussions………………………………………………………… 92
6.2 Contributions……………………………………………………..... 93
6.3 Future Works………………………………………………………. 94
Reference……………………………………………………………………. 95
參考文獻 An S., Oh Y.S., Park K.Y., Lee S.S., Song C.M., “Dual-axis microgyroscope with closed-loop detection,” Sensors and Actuators A, Vol. 73, pp. 1-6, 1999.
Ayazi F., Najafi K., “A HARPSS polysilicon vibrating ring gyroscope,” J. MEMS, Vol. 10, pp. 169-179, 2001.
Alper S.E and Akin T., “A symmetric surface micromachined gyroscope with decoupled oscillation modes,” Sens. and Actu. Vol. 97-98, pp. 347-358, 2002.
Bernstein J., Cho S., King A.T., Kourepenis A., Maciel P., Weinberg M., “A Micromachined Comb-Drive Tuning Fork Rate Gyroscope,” IEEE Micro Electro Mechanical Systems, 1993, pp. 143-148, 1993.
Bickel R. and Tomizuka M., “Passive-based Versus Disturbance Observer Based Robot control: Equivalence and Stability,” J. Dynamic system, Measurement, and Control, Vol. 121, pp. 41-47, 1999.
Chou C.S. and Chang C.O., “Modal precession of a hemispherical shell gyro excited by electrostatic field”, Japanese Journal of Applied Physics, Vol. 36, pp. 7073-7081, 1997.
Chou C.S., Chang C.O., Hwang J.J., “Vibration of a hemispherical shell gyro excited by an electrostatic field,” International Journal of Applied Electromagnetics and Mechanics, Vol. 10, pp. 25- 449, 1999.
Chen Y.-C., M’Closkey R.T., Tran T.A., Blaes B., “A Control and Signal Processing Integrated Circuit for the JPL-Boeing Micromachined Gyroscopes,” IEEE Transaction on Control Systems Technology, Vol. 13, pp. 286-300, 2005.
dSPACE, DS1104 R&D Controller Board, 2004.
http://www.dspaceinc.com/ww/en/inc/home/products/hw/singbord/ds1104.cfm
Dao D.V., Dau V.T., Dinh T.X., Sugiyama S., “A Fully Integrated MEMS-Based Convective 3-DOF Gyroscope,” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 10-14, pp. 1211-1214, 2007.
Fujita T., Maenaka K., Mizuno T., Matsuoka T., Kojima T., Oshima T., Maeda M., “Disk-shaped bulk micromachined gyroscope with vacuum sealing,” Sensors and Actuators A: Physical, Vol. 82, pp. 198-204, 2000.
Greiff P., Boxenhorn B., King T., Niles L., “Silicon monolithic micromechanical gyroscope,” Tech. Dig. 6th Int. Conf. Solid-State Sensors and Actuators pp. 966-68, 1991.
Geen J.A., Sherman S.J., Chang J.F., Lewis S.R.. ”Single-chip surface micro-machining integrated gyroscope with 50 deg/hour root Allan variance,” Dig. IEEE Int. Solid-State Circuits Conf., pp. 426-427, 2002.
Irvine Sensors, MS3110 Universal Capacitive ReadoutTM IC, 2004.
http://www.irvine-sensors.com/pdf/MS3110%20Datasheet%20USE.pdf
Juneau T., Pisano A.P., Smith J.H., “Dual axis operation of a micromachined rate gyroscope,” Solid State Sensors Actuators, Vol. 2, pp. 883-886, 1997.
Jeong C., Seok S., Lee B., Kim H., Chun K., “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” Journal of Micromech. and Microeng. Vol. 14, pp. 1530-1536, 2004.
Johari H., Shah J., Ayazi F., “ High Frequency XYZ-axis Single-disk Silicon Gyroscope,” MEMS 2008, Tucson, AZ, USA, Vol. 13-17, pp. 856-859, 2008.
Kraft M., “Micromachined inertial sensors: state of the art and a look into the future,” IMC Measurement and Control, Vol. 33, pp. 164-168, 2000.
Kawai H., Atsuchi K.I., Tamura M., Ohwada K., “High-resolution microgyroscope using vibratory motion adjustment technology,” Sens. and Actu. Vol. 90, pp. 153-159, 2001.
Kwon J., Kim I.S., “Oscillation condition and the uncertainty principle,” 2007 IEEE MTT-S International Microwave Symposium Digest, pp. 2161-2164, 2007.
Leland R.P., “Adaptive control of a MEMS gyroscope using Lyapunov Methods,” IEEE Transactions on Control System Technologies, Vol. 14, pp. 278-283, 2006.
Lee A., Ko H., Cho D.D., Hwang G., “Non-ideal behavior of a driving resonator loop in a vibratory capacitive microgyroscope,” Microelectronics Journal, Vol. 39, pp. 1-6, 2008.
Liu K., Zhang W., Chen W., Li K., Dai F., Cui F., Wu X., Ma G., Xiao Q., “The development of micro-gyroscope technology,” J. Micromech. Microeng. Vol. 19, pp. 113001, 2009.
Mochida Y., Tamura M., Ohwada K., “A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes,” Sens. Actuators A, Vol. 80, pp. 170-178, 2000.
M’Closkey R.T., Vakakis A., Gutierrez R., “Mode Localization Induced by a Nonlinear Control Loop,” Nonlinear Dynamics, Vol. 25, pp. 221-236, 2001.
Madou M.J., “Fundamentals of Microfabrication,” 2nd Ed., CRC Press, 2002.
Nguyen C.T.C., “Micromechanical Signal Processors,” Ph. D. Dissertation, University of California, Berkeley, 1994.
National Semiconductor, LM13600 Dual Operational Transconductance Amplifiers, 1998.
http:/www.alldatasheet.com/datasheet-pdf/pdf/8638/NSC/LM13600.html
Okada K., Matsu Y., Taniguchi N., Itano H., “Development of 3-axis Gyro-Sensor Using Piezoelectric Element,” Proceedings of the 20th Sensor Symposium, pp.123-126, 2003.
Putty M.W., Najafi K., “A micromachined vibrating ring gyroscope,” Micro Electro Mechanical Systems, MEMS ‘95, Proc. IEEE, pp. 213-20, 1994.
Painter C.C., Shkel A.M., “Identification of anisoelasticity for electrostatic trimming of rate integrating gyroscopes,” Proc. of SPIE - The International Society for Optical Engineering, Vol. 4700, pp. 157-168, 2002.
Painter C.C., Shkel A.M., “Active structural error suppression in MEMS vibratory rate integrating Gyroscopes,” IEEE Sens. Journal, Vol. 3, pp.595-606, 2003.
Pilkey W.D., “Formulas For Stress Strain And Structural Matrices,” John Wiley & Sons, Inc., 2nd Edition, 2005.
Rajendran S and Liew K.M., “Design and simulation of an angular-rate vibrating microgyroscope,” Sens. and Actu. Vol. 116, pp. 241-256, 2004.
Robin L., “MEMS Accelerometer, Gyroscope and IMU Market 2008-2013,” Yole Developpement, 2009.
Shkel A.M., Horowitz R., Seshia A.A., Park S., Howe R.T., “Dynamics and control of micromachined gyroscopes,” Proc. of the American Control Conference, Vol. 3, pp. 2119-2124, 1999.
Shearwood C., Ho K.Y., Williams C.B., Gong H., “Development of a levitated micromotor for application as a gyroscope,” Sensors and Actuators A : Physical, Vol. 83, pp.85-92, 2000.
Schrijver E., Dijk J.V., “Disturbance observers for rigid mechanical systems: equivalence, stability, and design,” J. Dynamic system, Measurement, and Control, Vol. 124, pp. 539-548, 2002.
SauKoski M., Aaltonen L., Halonen K.A.I., “Zero-Rate Output and Quadrature Compensation in Vibratory MEMS Gyroscope,” IEEE Sensors Journal, Vol. 7, pp. 1639-1651, 2007.
Schofield A.R., Trusov A.A., Shkel A.M., “Multi-Degree of Freedom Tuning Fork Gyroscope Demonstrating Shock Rejection,” IEEE SENSORS 2007 Conference, pp. 120-123, 2007.
Shim H., Joo Y.J., “State space analysis of disturbance observer and a robust stability condition,” 46th IEEE International Conference on Decision and Control, pp. 2193-2198, 2007.
Torti R., Gondhalekar V., Tran H., Selfors B., “Electrostatically suspended and sensed micro-mechanical rate gyroscope,” Proc. SPIE, Vol. 2220, pp. 27-38, 1994.
Tanaka K., Mochida Y., Sugimoto M., Moriya K., Hasegawa T., Atsuchi K., Ohwada K., “Micromachined vibrating gyroscope,” Sensors and Actuators, A: Physical, Vol. 50, pp. 111-115, 1995.
Tanaka K., Kihara R., Amores A.S., Montserrat J., Esteve J., “Parasitic effect on silicon MEMS resonator model parameters,” Microelectronic Engineering, Vol. 84, pp. 1363-1368, 2007.
Tsai N.-C., Sue C.-Y., Lin C.-C., “Micro Angular Rate Sensor Design and Non-linear Dynamics,” Journal of Micro/nanolithography, Mems, and Moems, Vol. 6, pp. 033008, 2007.
Tsai N.-C., Sue C.-Y., Lin C.-C., “Performance Assessment of a Novel Tri-axis Micro-gyroscope,” Journal of Micro/nanolithography, Mems, and Moems, Vol. 7, No.4, pp. 043030, 2008.
Tsai N.-C. and Sue C.-Y., “Compensation to Imperfect Fabrication and Asymmetry of Micro-Gyroscopes by using Disturbance Estimator,” Microsystem Technologies, Vol. 15, No. 12, pp. 1803-1814, 2009.
Williams C.B., Shearwood C., Mellor P.H., Yates R.B., “Modelling and testing of a frictionless levitated micromotor,” Sensors and Actuators A : Physical, Vol. 61, pp.469-473, 1997.
Weng J.H., Chieng W.H., Lai J.M., “Structural design and analysis of micromachined ring-type vibrating sensor of both yaw rate and linear acceleration,” Sensors and Actuators A: physical, Vol. 117, pp. 230-240, 2005.
Yazdi N., Ayazi F., Najafi K., “Micromachined inertial sensors” Proceedings of the IEEE, Vol. 86, pp. 1640-1659, 1998.
Yuan W., Chang H., Li W., Ma B., “Application of an optimization methodology for multidisciplinary system design of microgyroscopes,” Microsystem Tech. Vol. 12, pp. 315-323, 2006.
Zhu R., Ding H., Su Y., Zhou Z., “Micromachined Gas Inertial Sensor Based on Convection Heat Transfer,” Sens. and Actu. A, Vol. 130/31, pp. 68-74, 2006.
Zheng Q., Dong L., Gao Z., “Control and rotation rate estimation of vibrational MEMS gyroscopes,” 16th IEEE International Conference on Control Applications, pp. 118-123, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-01-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-01-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw