進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1912201904185800
論文名稱(中文) 行人使用 Google 地圖應用程式尋路之策略研究
論文名稱(英文) Analysis of the Wayfinding Strategies of Pedestrians Using the Google Maps Mobile Application
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 108
學期 1
出版年 108
研究生(中文) 林孟葶
研究生(英文) Meng-Ting Lin
學號 U76051043
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-林君昱
口試委員-曾祥非
口試委員-鄭孟淙
中文關鍵字 Google地圖應用程式  手機導航應用程式  行人導航系統  個別差異  尋路策略 
英文關鍵字 Google Maps app  individual differences  pedestrian navigation  wayfinding strategy 
學科別分類
中文摘要 隨著全球都市在公共運輸及共享交通的發展日增,以及近年來智慧型手機的普及,越來越多人在交通工具之間轉乘或是在到達目的地之前,會使用手機上的導航應用程式協助,以步行的方式來尋路,因此如何設計出有效、人性的導航系統與介面,是十分重要的議題。過去與導航系統介面相關的研究,多以汽車駕駛者為中心來做討論,因此為了更佳了解對於「行人」所使用的導航系統應如何最佳化,本研究即以行人及其常用的導航應用程式「Google地圖應用程式(Google Maps app)」作為主要對象。實驗一的主要目的是在探討行人使用Google Maps app尋路時的操作模式與使用策略。透過行為觀察、操作錄影與訪談,記錄每位實驗參與者在真實街道中利用Google Maps app從指定出發點尋路找到前往目的地之方向的過程(例如輸入目的地後顯示藍色的建議「路線」及指示目前面對方向的藍色「光束」)。所得資訊經過階層式群聚分析進行分類,得到六種最常見的尋找出發方向之「尋路策略」類型,包括:(1)不旋轉地圖或身體,直接觀察地標和路線之間的相對關係(2)旋轉地圖以將地圖上與環境中的地標對齊(3)不旋轉地圖或身體而觀察地圖上的光束指向和路線的相對關係(4)旋轉身體將光束的指向旋轉朝向目的地(5)旋轉身體將光束的指向轉至對齊平行出發路線(6)旋轉身體將光束的指向轉至對齊平行出發路線後,再旋轉地圖以將地圖上與環境中的地標對齊。實驗二進一步針對實驗一中歸納出的「尋路策略」及介面上的「設計因子」,進行實驗操弄以了解其與「尋路效率」之間的關係,結果發現習慣使用「地標」或「光束」資訊來尋路的使用者,若尋路時分別得到其所需的資訊形式,會有較快的尋路表現;但對於不論是習慣「旋轉地圖」或是「不旋轉地圖」的使用者而言,地圖介面是經自動旋轉而呈現「前方向上」者都會較無旋轉之地圖有較快的尋路表現。因此對於未來行人導航應用程式之介面設計,本研究建議呈現「前方向上」的旋轉地圖,並針對不同策略使用者提供其所需要的介面資訊,應能讓行人使用者在陌生環境中有較佳的尋路效率。這些結果可幫助我們對於行人在尋路時使用行動導航輔助應用程式的使用行為有更深入的瞭解,同時在未來更可藉由比較不同策略之間的差異對個人化的導航介面設計提出建言,以期能優化行人在使用手機導航應用程式的使用經驗。
英文摘要 To optimize a navigation system designed specifically for pedestrians, this study analyzed Google Maps and its users by conducting two experiments. In the first experiment, behavioral observation, interviews, and video recordings of app operation by users were used to analyze how each participant interacted with and used the app to reach real-world destinations. Subsequently, a hierarchical cluster analysis was performed to classify the collected data into six types of wayfinding strategies. In the second experiment, the wayfinding strategies compiled in the first experiment and selected interface design factors were subjected to experimental manipulation to determine their relationships with wayfinding efficiency. The results suggested that participants who tended to rely on information indicated by nearby landmarks or the direction indicator identified the departure direction more quickly than did other participants whenever their preferred information was provided. Whether or not participants had the habit of rotating their maps, all could find the optimal route more quickly when the track-up view was enabled by autorotating the map interface. The aforementioned findings provide a deeper understanding of pedestrian behaviors when using navigation apps for wayfinding.
論文目次 目錄
壹、 緒論 1
貳、 文獻探討 2
一、 尋路行為 2
二、 導航工具 4
三、 相關研究 7
參、 實驗一:尋路策略研究 9
一、 研究方法 10
二、 實驗參與者與材料 10
(一) 實驗參與者 10
(二) 尋路路線 10
(三) 尋路工具 11
(四) 紀錄工具 12
三、 實驗程序 12
四、 分析方法 15
五、 結果 15
(一) 操作行為與關注資訊 16
(二) 使用策略 20
(三) 使用者「操作方式與關注資訊」與「使用策略」穩定性 29
(四) 尋路策略 30
六、 討論 36
(一) 實驗結果 37
(二) 推論限制 38
(三) 未來設計與研究建議 40
肆、 實驗二:「尋路策略」與「介面設計」關係之研究 41
一、 實驗問題 43
二、 實驗假設 45
三、 實驗設計 46
四、 實驗參與者與材料 47
(一) 實驗參與者 47
(二) 實驗路線 47
(三) 尋路工具 49
(四) 紀錄工具 53
五、 實驗程序 53
六、 分析方法 54
七、 實驗結果 55
八、 討論: 65
(一) 實驗結果 65
(二) 實驗限制 73
(三) 未來設計與研究建議 73
伍、 綜合討論 75
一、 研究摘述 75
二、 研究結果 75
三、 研究限制與未來建議 76
陸、 參考文獻 79
柒、 附錄 84
參考文獻 Aditya, T., Laksono, D., Sutanta, H., Izzahudin, N., & Susanta, F. (2018). A usability evaluation of a 3D map display for pedestrian navigation. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W10, 3-10. doi:10.5194/isprs-archives-XLII-4-W10-3-2018
Bergum, B. O., & Bergum, J. E. (1981). Population stereotypes: An attempt to measure and define. Proceedings of the human factors society annual meeting, 25(1), 662-665. doi:10.1177/1071181381025001175
Bienk, S., Kattenbeck, M., Ludwig, B., Müller, M., & Ohm, C. (2013). I want to view it my way - interfaces to mobile maps should adapt to the user’s orientation skills. Paper presented at the 12th International Conference on Mobile and Ubiquitous Multimedia (MUM 2013), Luleå, Sweden.
Bjerva, T., & Sigurjónsson, T. (2016). Wayfinding by means of maps in real-world settings: A critical review. Journal of navigation, 70(02), 263-275. doi:10.1017/s0373463316000643
Bouton, S., Knupfer, S. M., Mihov, I., & Swartz, S. (2015). Urban mobility at a tipping point. Retrieved from https://www.mckinsey.com/business-functions/sustainability/our-insights/urban-mobility-at-a-tipping-point
Brugger, A., Richter, K. F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: Principles and Implications, 4(1), 5. doi:10.1186/s41235-019-0156-5
Chan, A. H. S., & Hoffmann, E. R. (2010). Movement compatibility for frontal controls with displays located in four cardinal orientations. Ergonomics, 53(12), 1403-1419. doi:10.1080/00140139.2010.527018
Chao, C. J., Lin, C. H., & Hsu, S. H. (2014). An assessment of the effects of navigation maps on drivers' mental workloads. Perceptual and Motor Skills, 118(3), 709-731. doi:10.2466/22.29.PMS.118k28w4
Chapanis, A., & Lindenbaum, L. E. (1959). A reaction time study of four control-display linkages. Human Factors, 1(4), 1-7. doi:10.1177/001872085900100401
Chen, C.-W., You, M., & Chiou, S.-C. (2003). Psycho-pleasurability of maps for wayfinding. Paper presented at the 6th Asian Design Conference: Integration of Knowledge, Kansei, and Industrial Power, Tsukuba, Japan.
Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: Proposed strategies for navigational aiding. Presence: Teleoperators and Virtual Environments, 8(6), 671-685. doi:10.1162/105474699566558
Dai, R., Thomas, A. K., & Taylor, H. A. (2018). When to look at maps in navigation: Metacognitive control in environment learning. Cognitive Research: Principles and Implications, 3, 36. doi:10.1186/s41235-018-0130-7
Darken, R. P., & Cevik, H. (1999). Map usage in virtual environments: Orientation issues. Paper presented at the Proceedings IEEE Virtual Reality (Cat. No. 99CB36316), Houston, TX.
Dickmann, F. (2012). City maps versus map-based navigation systems – an empirical approach to building mental representations. The Cartographic Journal, 49(1), 62-69. doi:10.1179/1743277411Y.0000000018
Dillemuth, J. A. (2009). Navigation tasks with small-display maps: The sum of the parts does not equal the whole. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 187-200. doi:10.3138/carto.44.3.187
Downs, R. M., & Stea, D. (1973). Image and environment: Cognitive mapping and spatial behavior. Chicago: Aldine Publishing Company.
Eaton, G. (1991). Wayfinding in the library: Book searches and route uncertainty. RQ, 30(4), 519-527.
Fang, Z., Li, Q., & Shaw, S.-L. (2016). What about people in pedestrian navigation? Geo-Spatial Information Science, 18(4), 135-150. doi:10.1080/10095020.2015.1126071
Gartner, G., & Hiller, W. (2009). Impact of restricted display size on spatial knowledge acquisition in the context of pedestrian navigation. In Location based services and telecartography ii: From sensor fusion to context models (pp. 155-166). Berlin, Heidelberg: Springer Science & Business Media.
Gartner, G., Huang, H., Millonig, A., Schmidt, M., & Ortag, F. (2011). Human-centred mobile pedestrian navigation systems. Mitteilungen der Österreichischen Geographischen Gesellschaft., 153, 237-250. doi:10.1553/moegg153s237
Gartner, G., & Rehrl, K. (2009). Location based services and telecartography ii - from sensor fusion to context models. Berlin, Heidelberg: Springer Science & Business Media.
Gibbons, J. D. C., Subhabrata. (2010). Nonparametric statistical inference. United Kingdom: Chapman & Hall.
Google. (2018). Google I/O is a developer festival that was held may 8-10 at the shoreline amphitheatre in mountain view, ca. Retrieved from https://events.google.com/io2018/
Gopher, D., & Iani, C. (2002). Attention. London: Nature publishing company.
Hsu, S. H., Lin, C. H., & Chao, C. J. (2012). The effects of different navigation maps on driving performance. Perceptual and Motor Skills, 115(2), 403-414. doi:10.2466/22.24.Pms.115.5.403-414
Ingwersen, P. (1982). Search procedures in the library—analysed from the cognitive point of view. Journal of Documentation, 38(3), 165-191. doi:10.1108/eb026727
Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a gps-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74-82. doi:https://doi.org/10.1016/j.jenvp.2007.09.002
Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users' wayfinding behavior. Cartographic Perspectives, 17-28. doi:10.14714/CP75.82
Jørgensen, A. H. (1990). Thinking-aloud in user interface design: A method promoting cognitive ergonomics. Ergonomics, 33(4), 501-507. doi:10.1080/00140139008927157
Karimi, H. A., Jiang, M., & Zhu, R. (2013). Pedestrian navigation services: Challenges and current trends. Geomatica, 67(4), 259-271. doi:10.5623/cig2013-052
Kayton, M., & Fried, W. R. (1996). Avionics navigation systems. Hoboken, New Jersey: John Wiley & Sons.
Kendall, M. G., & Smith, B. B. (1939). The problem of m rankings. The Annals of Mathematical Statistics, 10(3), 275-287. doi:10.1214/aoms/1177732186
Kunde, W., Müsseler, J., & Heuer, H. (2007). Spatial compatibility effects with tool use. Human Factors, 49(4), 661-670. doi:10.1518/001872007x215737
Lee, W. C., & Cheng, B. W. (2008). Effects of using a portable navigation system and paper map in real driving. Accident Analysis & Prevention, 40(1), 303-308. doi:10.1016/j.aap.2007.06.010
Levine, M. (1982). You-are-here maps:Psychological considerations. Environment and Behavior, 14(2), 221-237. doi:10.1177/0013916584142006
Lewis, C. (1982). Using the "thinking-aloud" method in cognitive interface design. Yorktown Heights, N.Y: IBM T.J. Watson Research Center.
Li, C. (2006). User preferences, information transactions and location-based services: A study of urban pedestrian wayfinding. Computers, Environment and Urban Systems, 30(6), 726-740. doi:10.1016/j.compenvurbsys.2006.02.008
Lynch, K. (1960). The image of the city Cambridge, Massachusetts, and London, England: Massachusetts Institute of Technology.
Miller, J. (1991). Short report: Reaction time analysis with outlier exclusion: Bias varies with sample size. The Quarterly Journal of Experimental Psychology Section A, 43(4), 907-912. doi:10.1080/14640749108400962
Montello, D. R., & Sas, C. (2006). Human factors of wayfinding in navigation. In International encyclopedia of ergonomics and human factors (pp. 2003-2008).
Nielsen, J. (1994). Usability engineering: Morgan kaufmann
Panko, R. (2018). The popularity of Google Maps: Trends in navigation apps in 2018. Retrieved from https://themanifest.com/app-development/popularity-google-maps-trends-navigation-apps-2018
Passini, R. (1981). Wayfinding: A conceptual framework. Urban Ecology, 5(1), 17-31. doi:10.1016/0304-4009(81)90018-8
Richter, K.-F., Dara-Abrams, D., & Raubal, M. (2010). Navigating and learning with location based services: A user-centric design. In Lbs and telecartography (pp. 261–276).
Rodes, W., & Gugerty, L. (2012). Effects of electronic map displays and individual differences in ability on navigation performance. Human Factors, 54(4), 589-599. doi:10.1177/0018720812439413
Schnitzler, V., Giannopoulos, I., Hölscher, C., & Barisic, I. (2016). The interplay of pedestrian navigation, wayfinding devices, and environmental features in indoor settings. Paper presented at the ETRA '16- Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, New York, NY.
Schwarz, S., Sellitsch, D., Tscheligi, M., & Olaverri Monreal, C. (2015). Safety in pedestrian navigation: Road crossing habits and route quality needs. Paper presented at the FAST-zero'15: 3rd International Symposium on Future Active Safety Technology Toward zero traffic accidents, Gothenburg , Sweden.
Swienty, O., Reichenbacher, T., Reppermund, S., & Zihl, J. (2008). The role of relevance and cognition in attention-guiding geovisualisation. The Cartographic Journal, 45(3), 227-238. doi:10.1179/000870408X311422
Toffler, A. (1984). Future shock. New York: Bantam books.
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208. doi:10.1037/h0061626
United Nations Population Division. (2018). World urbanization prospects 2018. Retrieved from https://population.un.org/wup/
Warren, D. H., & Scott, T. E. (1993). Map alignment in traveling multisegment routes. Environment and Behavior, 25(4), 643-666. doi:10.1177/0013916593254006
Warren, D. H., Scott, T. E., & Medley, C. (1992). Finding locations in the environment: The map as mediator. Perception, 21(5), 671-689. doi:10.1068/p210671
Webber, E., Burnett, G., & Morley, J. (2012). Pedestrian navigation with a mobile device: Strategy use and environmental learning. Paper presented at the Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and Computers, Birmingham, United Kingdom.
Wen, J., Helton, W. S., & Billinghurst, M. (2013). Classifying users of mobile pedestrian navigation tools. Paper presented at the Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, Adelaide, Australia.
Wickens, C. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomic Science, 3, 159-177. doi:10.1080/14639220210123806
Worringham, C. J., & Beringer, D. B. (1989). Operator orientation and compatibility in visual-motor task performance. Ergonomics, 32(4), 387-399. doi:10.1080/00140138908966105
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-03-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-03-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw