進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908202016063500
論文名稱(中文) 過渡金屬複合電極在乙醇氧化行為之研究
論文名稱(英文) A Study of Electro-oxidation of Ethanol on Composite Electrodes of Transition Metal
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 羅予晨
研究生(英文) Yu-Chen Luo
學號 N36071015
學位類別 碩士
語文別 中文
論文頁數 131頁
口試委員 指導教授-李玉郎
口試委員-張鑑祥
口試委員-吳昭燕
口試委員-庄麗雲
中文關鍵字 乙醇氧化反應  化學無電鍍法  雙層金屬複合電極  表面增顯紅外光譜儀  循環伏安儀 
英文關鍵字 ethanol electro-oxidation  electroless plating  bimetallic composite electrode  surface-enhanced infrared absorption spectroscopy  cyclic voltammetry 
學科別分類
中文摘要 本研究利用表面增顯紅外光譜儀(SEIRAS)及循環伏安儀(CV)來探討鹼性環境中乙醇在複合金屬電極表面之氧化行為,以及不同電極對於乙醇氧化反應之影響。主要以化學無電鍍法(Electroless plating),於金或鈀薄膜基材上再沉積一層鉑金屬膜,製備成鉑/金、鉑/鈀及鈀/金雙層金屬複合電極,試圖改進電極之抗毒化能力及氧化效率。
在循環伏安圖中可以觀察到鉑與鈀電極之氧化行為相似,兩者初始氧化峰電流密度值相當,經過100圈掃描後,鉑電極之電流密度大幅下降,顯示其表面被一氧化碳(CO)毒化,導致氧化效率衰退。而鈀電極之毒化現象較緩和,能維持良好電流密度的穩定性。另外在金電極上沒有毒化產生,因此穩定性佳,但整體電流密度較小。對於雙層金屬複合電極,藉由上層鉑或鈀金屬膜厚度的控制,鉑/金電極不僅可使氧化乙醇之電位範圍變廣,更能大幅抑制毒化現象;鉑/鈀複合電極可維持良好的氧化效率,但其毒化現象略微提升;而鈀/金複合電極則會使毒化情形更嚴重。對此三系統,鉑/金、鉑/鈀及鈀/金的最佳參數分別為8分鐘、30秒及3分鐘。本研究另以氧化峰(If)與毒化峰(Ib)電流之比值(If/Ib)來分析電極的抗毒化能力,比值愈大代表抗毒化效果愈好。鈀電極之If/Ib值為3.49大於鉑電極之2.53,顯示鈀對於CO之抗毒化效應優於鉑。複合電極中鉑/金之If/Ib值可大幅提升至11.12,顯示其抗毒化能力上升許多。鉑/鈀電極之If/Ib值分別為2.21,其對毒化抑制無明顯效應。而鈀/金電極之沉積時間達3分鐘時才能改善毒化,其If/Ib值為3.69。
SEIRAS圖譜結果與CV相符,在白金電極上,CO特徵峰的訊號隨反應時間增加而上升並達一定值,表示表面活性位置被佔據無法繼續氧化成二氧化碳(CO2),形成電極毒化現象;而鈀電極中可觀察到CO隨著電位變化而吸脫附,因此表面不會失活可以持續進行反應,其抗毒化能力較佳。另外在金電極上之產物為乙酸,不會觀察到CO及CO2之特徵峰。而鉑/金和鉑/鈀複合電極上皆能觀察到與鈀電極類似之結果,因此以無電鍍法製備之雙層複合電極能有效改善毒化現象並維持氧化效率。
英文摘要 The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt or Pd catalytic layers on the Au and Pd film-coated FTO substrates.
The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53, 3.49, and 2.21 for the Pt, Pd, and Pt/Pd electrodes, respectively; which is possibly attributed to the decreasing ability of CO adsorption on Pd electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance than the Pt does. Furthermore, its stability is also superior. For the studied Pt/Au composite electrodes, the If/Ib value rises to 11.12 which suggests that it has a better ability against CO poisoning. The best deposition time for Pt/Au and Pt/Pd composite electrodes are 8 minutes and 30 seconds, respectively.
According to the SEIRAS spectra, the CO signal of Pt electrode remains indicates that the surface is poisoned leading to the efficiency decreases, whereas CO can desorb from Pd electrode contributing to the weaker poisoning and superior stability. On the other hand, ethanol is oxidized to acetic acid on Au electrode resulting in no poisoning effect but lower efficiency. For Pt/Au and Pt/Pd composite electrodes, the oxidation behaviors are similar with Pd electrode, meaning that these electrodes can overcome the poisoning effect and maintain the oxidation efficiency.
論文目次 摘要 I
Extended Abstract II
誌謝 ⅩⅤ
目錄 ⅩVII
表目錄 ⅩⅩⅡ
圖目錄 ⅩⅩIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 直接乙醇燃料電池 4
2-1-1 直接乙醇燃料電池之特性 4
2-1-2 直接乙醇燃料電池的工作原理 5
2-1-3 直接乙醇燃料電池的挑戰 7
2-2 乙醇氧化反應 11
2-2-1 乙醇氧化的反應機制 11
2-2-2 pH值對乙醇氧化反應之影響 13
2-3 陽極觸媒 16
2-3-1 鉑金屬 16
2-3-2 二元合金 17
2-4 探討乙醇氧化反應分析法 …24
2-4-1 循環伏安法 24
2-4-2 表面增顯紅外光譜 29
2-5 影響電極表面毒化現象之效應 33
2-5-1 d-band理論 33
2-5-2 影響d-band的效應 34
第三章 實驗部份 36
3-1 藥品及相關耗材 36
3-2 儀器設備 38
3-2-1 循環伏安儀(Cyclic voltammetry, CV) 38
3-2-2 表面增顯紅外光譜儀(Surface-enhanced infrared absorption spectroscopy, SEIRAS) 41
3-2-3 金屬濺鍍機 43
3-2-4 超純水機 44
3-3 實驗步驟 45
3-3-1 工作電極之製備 45
3-3-2 循環伏安儀之操作 48
3-3-3 表面增顯紅外光譜儀之操作 48
第四章 結果與討論 50
4-1 乙醇在單一金屬電極之氧化行為研究 50
4-1-1 多晶鉑金屬電極 50
4-1-1-1 循環伏安圖 50
4-1-1-2 表面增強紅外光譜 52
4-1-1-3 電化學穩定性分析 55
4-1-2多晶鈀金屬電極 56
4-1-2-1 循環伏安圖 56
4-1-2-2 表面增強紅外光譜 58
4-1-2-3 電化學穩定性分析 61
4-1-3多晶金金屬電極 63
4-1-3-1 循環伏安圖 63
4-1-3-2 表面增強紅外光譜 65
4-1-3-3 電化學穩定性分析 67
4-2 乙醇在鉑/金雙層金屬複合電極之氧化行為研究 68
4-2-1 以無電鍍沉積10秒製備鉑觸媒層 69
4-2-2 以無電鍍沉積30秒製備鉑觸媒層 70
4-2-3 以無電鍍沉積60秒製備鉑觸媒層 72
4-2-4 以無電鍍沉積300秒製備鉑觸媒層 74
4-2-5 以無電鍍沉積480秒製備鉑觸媒層 76
4-2-6 表面增顯紅外光譜 78
4-2-7 電化學穩定性分析 83
4-2-8 掃描電子顯微鏡影像 86
4-3 乙醇在鉑/鈀雙層金屬複合電極之氧化行為研究 87
4-3-1 以無電鍍沉積30秒製備鉑觸媒層 88
4-3-2 以無電鍍沉積60秒製備鉑觸媒層 89
4-3-3 以無電鍍沉積180秒製備鉑觸媒層 91
4-3-4 以無電鍍沉積300秒製備鉑觸媒層 93
4-3-5 以無電鍍沉積480秒製備鉑觸媒層 95
4-3-6 表面增顯紅外光譜 97
4-3-7 電化學穩定性分析 100
4-3-8 掃描電子顯微鏡影像 102
4-4 乙醇在鈀/金雙層金屬複合電極之氧化行為研究 103
4-4-1 以濺鍍法製備鈀/金電極 104
4-4-1-1 以10 mA濺鍍電流製備鈀觸媒層 104
4-4-1-2 以20 mA濺鍍電流製備鈀觸媒層 106
4-4-1-3 以30 mA濺鍍電流製備鈀觸媒層 108
4-4-1-4 以40 mA濺鍍電流製備鈀觸媒層 110
4-4-2 以化學無電鍍法製備鈀/金電極 112
4-4-2-1 以無電鍍沉積5秒製備鈀觸媒層 113
4-4-2-2 以無電鍍沉積30秒製備鈀觸媒層 114
4-4-2-3 以無電鍍沉積60秒製備鈀觸媒層 116
4-4-2-4 以無電鍍沉積180秒製備鈀觸媒層 118
4-4-3 電化學穩定性分析 120
4-4-4 掃描電子顯微鏡影像 122
第五章 結論 124
第六章 參考文獻 126
參考文獻 [1] F. Vigier, C. Coutanceau, A. Perrard, E. Belgsir, C. Lamy. Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry. 2004, 34, 439-446.
[2] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi. Alkaline direct alcohol fuel cells using an anion exchange membrane. Journal of Power Sources. 2005, 150, 27-31.
[3] M. Kamarudin, S. K. Kamarudin, M. Masdar, W. R. W. Daud. Direct ethanol fuel cells. International Journal of Hydrogen Energy. 2013, 38, 9438-9453.
[4] S. Rousseau, C. Coutanceau, C. Lamy, J-M. Léger. Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. Journal of Power Sources. 2006, 158, 18-24.
[5] E. Antolini. Catalysts for direct ethanol fuel cells. Journal of Power Sources. 2007, 170, 1-12.
[6] S. Song, P. Tsiakaras. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Applied Catalysis B: Environmental. 2006, 63, 187-193.
[7] G. Andreadis, P. Tsiakaras. Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chemical Engineering Science. 2006, 61, 7497-7508.
[8] S. Kontou, V. Stergiopoulos, S. Song, P. Tsiakaras. Ethanol/water mixture permeation through a Nafion® based membrane electrode assembly. Journal of Power Sources. 2007, 171, 1-7.
[9] D. D. James, P. G. Pickup. Effects of crossover on product yields measured for direct ethanol fuel cells. Electrochimica Acta. 2010, 55, 3824-3829.
[10] H. Maab, S. P. Nunes. Modified SPEEK membranes for direct ethanol fuel cell. Journal of Power Sources. 2010, 195, 4036-4042.
[11] S. Heysiattalab, M. Shakeri, M. Safari, M. Keikha. Investigation of key parameters influence on performance of direct ethanol fuel cell (DEFC). Journal of Industrial and Engineering Chemistry. 2011, 17, 727-729.
[12] M. Nacef, A. Affoune. Comparison between direct small molecular weight alcohols fuel cells’ and hydrogen fuel cell’s parameters at low and high temperature. Thermodynamic study. International Journal of Hydrogen Energy. 2011, 36, 4208-4219.
[13] S. Shuqin, W. Yi, S. Peikang. Thermodynamic and kinetic considerations for ethanol electrooxidation in direct ethanol fuel cells. Chinese Journal of Catalysis. 2007, 28, 752-754.
[14] H. Pramanik, A. Wragg, S. Basu. Studies of some operating parameters and cyclic voltammetry for a direct ethanol fuel cell. Journal of Applied Electrochemistry. 2008, 38, 1321-1328.
[15] S. Shen, T. Zhao, Q. Wu. Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. International Journal of Hydrogen Energy. 2012, 37, 575-582.
[16] Y. Wang, S. Zou, W. B. Cai. Recent advances on electro-oxidation of ethanol on Pt-and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts. 2015, 5,1507-1534.
[17] C. Busó‐Rogero, E. Herrero, J. M. Feliu. Ethanol oxidation on pt single‐crystal electrodes: surface‐structure effects in alkaline medium. ChemPhysChem. 2014, 15, 2019-2028.
[18] W. Zhou, M. Li, L. Zhang, S. H. Chan. Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochimica Acta. 2014, 123, 233-239.
[19] H. Razmi, E. Habibi, H. Heidari. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles. Electrochimica Acta. 2008, 53, 8178-8185.
[20] S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Öztürk, V. C. R. Vellinga, J. Koning, P. Rodriguez, M. T. M. Koper. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today. 2010, 154, 92-104.
[21] E. Antolini, E. Gonzalez. Alkaline direct alcohol fuel cells. Journal of Power Sources. 2010, 195, 3431-3450.
[22] 葉柏瑄, 乙醇在白金/鈀及白金/金複合電極上的氧化行為, 化學工程學系, 成功大學, 2019.
[23] Y. Y. Yang, J. Ren, Q. X. Li, Z. Y. Zhou, S. G. Sun, W. B. Cai. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catalysis. 2014, 4(3), 798-803.
[24] K. M. Hassan, A. A. Hathoot, R. Maher, M. A. Azzem. Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1, 8-diaminonaphthalene film in alkaline medium. RSC advances. 2018, 8(28), 15417-15426.
[25] B. Braunchweig, D. Hibbitts, M. Neurock, A. Wieckowski. Electrocatalysis: A direct alcohol fuel cell and surface science perspective. Catalysis today. 2013, 202, 197-209.
[26] M. Heinen, Z. Jusys, R. Behm. Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: an in situ ATR-FTIRS flow cell study. The Journal of Physical Chemistry C. 2010, 114, 9850-9864.
[27] R. B. Kutz, B. Braunschweig, P. Mukherjee, R. L. Behrens, D. D. Dlott, A. Wieckowski. Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. Journal of Catalysis. 2011, 278, 181-188.
[28] R. B. Kutz, B. Braunschweig, P. Mukherjee, D. D. Dlott, A. Wieckowski. Study of ethanol electrooxidation in alkaline electrolytes with isotope labels and sum-frequency generation. The Journal of Physical Chemistry Letters. 2011, 2, 2236-2240.
[29] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xi. Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental. 2003, 46, 273-285.
[30] J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. H. Schifferli, S. H. Yang. Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. Journal of the American Chemical Society. 2013, 135, 7985-7991.
[31] C. H. A. Tsang, K. N. Hui, K. Hui. Influence of Pd1Ptx alloy NPs on graphene aerogel/nickel foam as binder-free anodic electrode for electrocatalytic ethanol oxidation reaction. Journal of Power Sources. 2019, 413,98-106.
[32] L. Zhang, Q. Chang, H. Chen, M. Shao. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy. 2016, 29, 198-219.
[33] C. Zhang, A. Zhu, R. Huang, Q. Zhang, Q. Liu. Hollow nanoporous Au/Pt core–shell catalysts with nanochannels and enhanced activities towards electro-oxidation of methanol and ethanol. International Journal of Hydrogen Energy. 2014, 39, 8246-8256.
[34] C. Zhu, S. Guo, S. Don. PdM (M= Pt, Au) Bimetallic Alloy Nanowires with Enhanced Electrocatalytic Activity for Electro‐oxidation of Small Molecules. Advanced Materials. 2012, 24, 2326-2331.
[35] L. Han, H. Ju, Y. Xu. Ethanol electro-oxidation: Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic oscillation. international journal of hydrogen energy. 2012, 37, 15156-15163.
[36] M. Brandalise, R. W. R. Verjulio-Silva, M. M. Tusi, O. V. Correa, L. A. Farias, M. Linardi, E. V. Spinacé, A. O. Neto. Electro-oxidation of ethanol using PtRuBi/C electrocatalyst prepared by borohydride reduction. Ionics. 2009, 15, 743.
[37] V. Díaz, S. Real, E. Téliz, C. Zinola, M. Martins. New experimental evidence on the formation of platinum superactive sites in an electrochemical environment. International Journal of Hydrogen Energy. 2009, 34, 3519-3530.
[38] S. Chen, M. Schell. Bistability and excitability in the electrochemical oxidation of ethanol. Electrochimica Acta. 1999, 44, 4773-4780.
[39] P. Katikawong, T. Ratana, W. Veerasai. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes. Journal of Chemical Sciences. 2009, 121, 329-337.
[40] F.C. Simões, F. Vigier, J.-M. Léger, F. Hahn, C. Coutanceau, E.R. Gonzalez, G. Tremiliosi-Filho, A.R. de Andrade, P. Olivi, K.B. Kokoh. Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. Journal of Power Sources. 2007, 167, 1-10.
[41] S. Sun, M. Heinen, Z. Jusys, R.J. Behm. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study. Journal of Power Sources. 2009, 190, 2-13.
[42] Y. Zhao, X. Li, J. M. Schechter, Y. Yang. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. The Royal Society of Chemistry Advances. 2016, 6, 384-390.
[43] Y. C. Lin, H. L. Chou, M. C. Tsai, B. J. Hwang, L. S. Sarma, Y. C. Lee, C. I. Chen. Combined experimental and theoretical investigation of nanosized effects of Pt catalyst on their underlying methanol electro-oxidation activity. The Journal of Physical Chemistry C. 2009, 113, 9197-9205.
[44] A. Miki, S. Ye, M. Osawa. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chemical Communications. 2002, 1500-1501.
[45] Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. Journal of the American Chemical Society. 2003, 125, 3680-3681.
[46] A. Miki, S. Ye, T. Senzaki, M. Osawa. Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. Journal of Electroanalytical Chemistry. 2004, 563, 23-31.
[47] G. Samjeské, M. Osawa. Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time‐resolved IR spectroscopy. Angewandte Chemie International Edition. 2005, 44, 5694-5698.
[48] M. F. Silva, B. C. Batista, E. Boscheto, H. Varela, G. A. Camara. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy. Journal of the Brazilian Chemical Society. 2012, 23, 831-837.
[49] C. Zhu, B. Lan, R. L. Wei, C. N. Wang, Y. Y. Yang. Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS. ACS Catalysis. 2019, 9, 4046-4053.
[50] S. Bhattacharjee, U. V. Waghmare, S. C. Lee. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Scientific reports. 2016, 6, 35916.
[51] M. T. Greiner, T. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, R. Schlögl. Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry. 2018, 10, 1008-1015.
[52] I. Yagi, S. Nakabayashi, K. Uosaki. Excitation wavelength dependent three-wave mixing at a CO-covered platinum electrode. The Journal of Physical Chemistry B. 1997, 101, 7414-7421.
[53] M. V. Ganduglia-Pirovano, V. Natoli, M. H. Cohen, J. Kudrnovský, I. Turek. Potential, core-level, and d band shifts at transition-metal surfaces. Physical Review B. 1996, 54, 8892-8898.
[54] B. Hammer, Y. Morikawa, J. K. Nørskov. CO chemisorption at metal surfaces and overlayers. Physical Review Letters. 1996, 76, 2141-2144.
[55] S. Yang, H. Noguchi, K. Uosaki. Electronic Structure of CO Adsorbed on Electrodeposited Pt Thin Layers on Polycrystalline Au Electrodes Probed by Potential-Dependent IR/Visible Double-Resonance Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry C. 2018, 122, 8191-8201.
[56] S. Yang. Electronic Structure of CO/Pt Electrochemical Interfaces Investigated by Potential Dependent Double Resonance Sum Frequency Generation Spectroscopy. 2016.
[57] J. Kitchin, J. K. Nørskov, M. Barteau, J. Chen. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. The Journal of Chemical Physics. 2004, 120, 10240-10246.
[58] T. Awatani, I. Yagi, H. Noguchi, K. Uosaki. Second harmonic generation study on electrochemical deposition of palladium on a polycrystalline gold electrode. Journal of Electroanalytical Chemistry. 2002, 524, 184-193.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw