進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908202015341400
論文名稱(中文) 使用高介電常數之鋯材料提高透明導電薄膜在光電特性、顯微結構與材料機械性質之研究
論文名稱(英文) Study on the Optical, Electrical, and Mechanical Properties and the Microstructures of Transparent Conductive Films via the Addition of Zirconium with a High Dielectric Constant
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳典廷
研究生(英文) Dian-Ting Chen
學號 N16074310
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-林仁輝
口試委員-邱源成
口試委員-張守進
口試委員-陳貞夙
中文關鍵字 透明導電薄膜  氧化銦錫  近紅外線穿透  德汝德模型  介電常數 
英文關鍵字 Transparent conductive oxide  Indium tin oxide films  Near-infrared (NIR) transmission  Drude model  Dielectric constant 
學科別分類
中文摘要 由德汝德模型可知紅外波段的透明度與介電常數有關,透過摻雜高介電常數金屬,即可使薄膜整體的介電常數提高,進而降低電漿頻率,減少自由電子與電磁波產生的電漿共振,達到改善薄膜於紅外波段的透明度之目的。本研究選用氧化銦錫薄膜(ITO)為底材,其具有較低的電阻率,且在可見光區段擁有高穿透率,但在紅外區段則為高反射率。首先使用30 sccm之氬氣與不同氧通量(0、1、1.5、2、2.5 sccm)鍍製薄膜,以具有較優光電性能之1 sccm為後續實驗之固定參數。之後透過共濺鍍機進行金屬鋯摻雜,以提高薄膜整體介電常數,並研究不同摻雜功率(35、40、44、47、50W)下的性質變化。結果顯示,摻雜功率35W之ITO薄膜,其紅外平均穿透率較未摻雜相比提升約10%,而電阻率有些微上升。隨著摻雜功率的提升,過多的異質摻雜會讓晶格間隙中被佔據的情況加劇,使薄膜結晶性及晶粒大小降低,而雜質中心的增加導致載子濃度、載子遷移率均呈現下降趨勢,以上因素造成薄膜的反射率與吸收率上升,使得紅外平均穿透率有所下降。
英文摘要 According to the Drude model, electromagnetic waves in the infrared region will be reflected due to plasma resonance. The infrared light transmittance will have significant enhancement as the effects of the elevation of dielectric constant. In this study, we use indium tin oxide film (ITO) because it has the characterisitics of high transmittance and infrared reflectance and good electrical conductivity. Zirconium(Zr) is a metal material with a relatively higher dielectricity. Zr-doped indium tin oxide films were prepared in order to elevate the transmittance arising in the visible light (380 ~ 800 nm) and infrared (800~ 2600 nm) wavelength regions. Optimization was made for the oxygen flow rate first via the performances demonstrated in the electrical and optical properties, and then ITO:Zr thin films were deposited using a co-sputtering system by a direct current (DC) power source of 80 W, and for Zr doping by the DC power sources of 35, 40, 44, 47, and 50 W, respectively. And investigate the effects on surface morphology, microstructure, and mechanical, electrical, and optical properties with different doping. Reduced modulus and hardness of specimen are lowered by increasing the DC power, and these two parameters are also positively correlated to the product of crystalhmty and grain size. Increasing the power will produce more excessive carriers to reduce the carrier concentration and mobility, thus elevating the electrical resivity. A significant rise in the infrared transmittance compared to the undoped ITO films is achieved by doping the Zr into with ITO with DC power of 35W.
論文目次 摘要 I
Extended Abstract II
目錄 XII
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究目的 5
1-4 研究架構 6
第二章 基本理論 7
2-1 薄膜成核成長理論 7
2-2 氧化銦錫介紹 9
2-3 電漿頻率 10
2-4 介電常數混合理論 13
2-5 Bragg's定律 13
2-6 晶粒大小理論 14
2-7 楊氏模數與硬度 15
2-8 霍爾量測原理 16
2-9 分光光譜的理論與計算 18
第三章 實驗方法與步驟 25
3-1 實驗目的 25
3-2 試件準備及鍍製條件 25
3-3 實驗設備 26
3-3-1 化學濕式操作台(Chemical Wet Bench) 26
3-3-2 共濺鍍系統(Co-Sputtering Deposition System) 27
3-3-3 X光繞射儀(XRD) 28
3-3-4 霍爾效應分析儀(Hall Effect Analyzer) 29
3-3-5 分光光譜儀(UV/VIS/NIR) 30
3-3-6 原子力顯微鏡(AFM) 31
3-3-7 雙束型聚焦離子束系統(FIB) 31
3-3-8 穿透式電子顯微鏡(TEM) 32
3-3-9 奈米壓痕試驗機(Nanoindenter) 33
第四章 結果與討論 42
4-1 XRD分析 43
4-2 AFM表面粗糙度 45
4-3 SEM分析 46
4-4 TEM分析 47
4-5 奈米壓痕分析 49
4-6 電學性質 51
4-7 光學性質 54
第五章 結論與未來展望 87
5-1 結論 87
5-2 未來展望 88
參考文獻 89
參考文獻 [1] M. Sawada, M. Higuchi, S. Kondo, and H. Saka, "Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays," Japanese Journal of Applied Physics, vol. 40, no. 5R, pp. 3332-3336, 2001.
[2] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, and D.-S. Seo, "Transparent conductive Al-doped ZnO films for liquid crystal displays," Journal of Applied Physics, vol. 99, no. 12, p. 124505, 2006.
[3] M. H. Ahn, E.-S. Cho, and S. J. Kwon, "Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel," Applied Surface Science, vol. 258, no. 3, pp. 1242-1248, 2011.
[4] G. S. Devi, V. B. Subrahmanyam, S. Gadkari, and S. Gupta, "NH3 gas sensing properties of nanocrystalline ZnO based thick films," Analytica Chimica Acta, vol. 568, no. 1-2, pp. 41-46, 2006.
[5] Z.-C. Jin, I. Hamberg, C. Granqvist, B. Sernelius, and K.-F. Berggren, "Reactively sputtered ZnO: Al films for energy-efficient windows," Thin Solid Films, vol. 164, pp. 381-386, 1988.
[6] T. Gorjanc, D. Leong, C. Py, and D. Roth, "Room temperature deposition of ITO using rf magnetron sputtering," Thin Solid Films, vol. 413, no. 1-2, pp. 181-185, 2002.
[7] M. Alam and D. Cameron, "Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process," Thin solid films, vol. 377, pp. 455-459, 2000.
[8] J. Ma, D. Zhang, J. Zhao, C. Tan, T. Yang, and H. Ma, "Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature," Applied Surface Science, vol. 151, no. 3-4, pp. 239-243, 1999.
[9] S. Yang, B. Sun, Y. Liu, J. Zhu, J. Song, Z. Hao, X. Zeng, X. Zhao, Y. Shu, and J. Chen, "Effect of ITO target crystallinity on the properties of sputtering deposited ITO films," Ceramics International, vol. 46, no. 5, pp. 6342-6350, 2020.
[10] W. Jeong, S. Kim, and G. Park, "Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell," Thin Solid Films, vol. 506, pp. 180-183, 2006.
[11] J. A. Selvan, A. E. Delahoy, S. Guo, and Y.-M. Li, "A new light trapping TCO for nc-Si: H solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 3371-3376, 2006.
[12] C. G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review," Solar Energy Materials and Solar Cells, vol. 91, no. 17, pp. 1529-1598, 2007.
[13] D. Kim, I. Yun, and H. Kim, "Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells," Current Applied Physics, vol. 10, no. 3, pp. S459-S462, 2010.
[14] R. Levinson, P. Berdahl, and H. Akbari, "Solar spectral optical properties of pigments—Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements," Solar Energy Materials and Solar Cells, vol. 89, no. 4, pp. 319-349, 2005.
[15] K. Baedeker, Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. JA Barth, 1906.
[16] 楊明輝, "透明導電薄膜材料的研發近況," 工業材料, vol. 193, pp. 136-143, 2003.
[17] A. Moholkar, S. Pawar, K. Rajpure, and C. Bhosale, "Effect of solvent ratio on the properties of highly oriented sprayed fluorine-doped tin oxide thin films," Materials Letters, vol. 61, no. 14-15, pp. 3030-3036, 2007.
[18] R. Shukla, A. Srivastava, A. Srivastava, and K. Dubey, "Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition," Journal of Crystal Growth, vol. 294, no. 2, pp. 427-431, 2006.
[19] A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, and M. Okuda, "Pulsed laser deposition of transparent conducting indium tin oxide films in magnetic field perpendicular to plume," Japanese Journal of Applied Physics, vol. 40, no. 4B, p. L401, 2001.
[20] L. Schulz, "The experimental study of the optical properties of metals and the relation of the results to the Drude free electron theory," Advances in Physics, vol. 6, no. 21, pp. 102-144, 1957.
[21] C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, "Surface plasmon resonance in conducting metal oxides," Journal of Applied Physics, vol. 100, no. 5, p. 054905, 2006.
[22] Z. Ping, H. Yuyong, L. Yuxiang, L. Haifeng, L. Xu, and G. Peifu, "Characteristics analyze of ITO thin films developed by two methods in infrared band," Acta Photonica Sinica, vol. 31, no. 8, pp. 985-988, 2002.
[23] T. Koida, H. Fujiwara, and M. Kondo, "Hydrogen-doped In2O3 as high-mobility transparent conductive oxide," Japanese Journal of Applied Physics, vol. 46, no. 7L, p. L685, 2007.
[24] E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, and A. L. J. N. m. Sharma, "Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics," Nature Materials, vol. 14, no. 4, pp. 414-420, 2015.
[25] T. Gessert, J. Burst, X. Li, M. Scott, and T. Coutts, "Advantages of transparent conducting oxide thin films with controlled permittivity for thin film photovoltaic solar cells," Thin Solid Films, vol. 519, no. 21, pp. 7146-7148, 2011.
[26] L. J. Vossen and W. Kerm, Thin Film Process. Academic Process, 1999, p. 134.
[27] M.Ohring, Materials science of Thin Films, 2nd ed. San Diego, U.S.A: Academic Press, 2001, pp. 357-360.
[28] G. Rupprecht, "Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten," Zeitschrift für Physik, vol. 139, no. 5, pp. 504-517, 1954.
[29] M. Quaas, C. Eggs, and H. Wulff, "Structural studies of ITO thin films with the Rietveld method," Thin Solid Films, vol. 332, no. 1-2, pp. 277-281, 1998.
[30] 楊志豪, "雙靶射頻磁控濺鍍系統製備氧化銦錫薄膜摻雜錫,鈦及鉻之性質研究," 博士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2008.
[31] H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, "The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature," Physica B: Condensed Matter, vol. 373, no. 2, pp. 274-279, 2006.
[32] M. Fox, Optical Properties of Solids. New York: Oxford University Press, 2001.
[33] M. Achour, M. E. Malhi, J. Miane, F. Carmona, and F. Lahjomri, "Microwave properties of carbon black–epoxy resin composites and their simulation by means of mixture laws," Journal of Applied Polymer Science, vol. 73, no. 6, pp. 969-973, 1999.
[34] J. Kim, T. Kim, and C. Kim, "Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band," in Proceedings of the Korean Society For Composite Materials Conference, 2004, pp. 155-160: The Korean Society for Composite Materials.
[35] S. Stölzle, A. Enders, and G. Nimtz, "Numerical simulation of random composite dielectrics," Journal of Physics, vol. 2, no. 4, pp. 401-408, 1992.
[36] I. Hamberg and C. G. Granqvist, "Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows," Journal of Applied Physics, vol. 60, no. 11, pp. R123-R160, 1986.
[37] F. Meng, J. Shi, Z. Liu, Y. Cui, Z. Lu, and Z. Feng, "High mobility transparent conductive W-doped In2O3 thin films prepared at low substrate temperature and its application to solar cells," Solar Energy Materials Solar Cells, vol. 122, pp. 70-74, 2014.
[38] J. W. McPherson, J. Kim, A. Shanware, H. Mogul, and J. Rodriguez, "Trends in the ultimate breakdown strength of high dielectric-constant materials," IEEE transactions on electron devices, vol. 50, no. 8, pp. 1771-1778, 2003.
[39] J. Kacher, C. Landon, B. L. Adams, and D. Fullwood, "Bragg's Law diffraction simulations for electron backscatter diffraction analysis," Ultramicroscopy, vol. 109, no. 9, pp. 1148-1156, 2009.
[40] R. N. Chauhan, C. Singh, R. Anand, and J. Kumar, "Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics," International Journal of Photoenergy, vol. 2012, pp. 1-6, 2012.
[41] 魏伯任, "奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測—理論分析與實驗印證," 博士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2005.
[42] H. Fukuyama, H. Ebisawa, and Y. Wada, "Theory of Hall effect. I: Nearly free electron," Progress of Theoretical Physics, vol. 42, no. 3, pp. 494-511, 1969.
[43] D. Song, P. Widenborg, W. Chin, and A. G. Aberle, "Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering," Solar energy materials and solar cells, vol. 73, no. 1, pp. 1-20, 2002.
[44] A. K. Kulkarni, K. Schulz, T.-S. Lim, and M. Khan, "Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates," Thin Solid Films, vol. 308, pp. 1-7, 1997.
[45] A. Suzuki, T. Matsushita, T. Aoki, A. Mori, and M. Okuda, "Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition," Thin solid films, vol. 411, no. 1, pp. 23-27, 2002.
[46] H. Kim, J. Horwitz, G. Kushto, A. Pique, Z. Kafafi, C. Gilmore, and D. Chrisey, "Effect of film thickness on the properties of indium tin oxide thin films," Journal of Applied Physics, vol. 88, no. 10, pp. 6021-6025, 2000.
[47] S. Najwa, A. Shuhaimi, N. A. Talik, N. Ameera, M. Sobri, and M. Rusop, "In-situ tuning of Sn doped In2O3 (ITO) films properties by controlling deposition Argon/Oxygen flow," Applied Surface Science, vol. 479, pp. 1220-1225, 2019.
[48] Z. Chen, Y. Zhuo, W. Tu, Z. Li, X. Ma, Y. Pei, and G. Wang, "High mobility indium tin oxide thin film and its application at infrared wavelengths: model and experiment," Optics express, vol. 26, no. 17, pp. 22123-22134, 2018.
[49] S. Kishimoto and Y. Yamauchi, "The exploration of domain sizes and orientation directions in ordered assembled nanoparticles with electron Moiré fringes," Physical Chemistry Chemical Physics, vol. 11, no. 27, pp. 5554-5557, 2009.
[50] F. Mammeri, E. Le Bourhis, L. Rozes, and C. Sanchez, "Mechanical properties of hybrid organic–inorganic materials," Journal of Materials Chemistry, vol. 15, no. 35-36, pp. 3787-3811, 2005.
[51] S. Zhang, D. Sun, Y. Fu, and H. Du, "Recent advances of superhard nanocomposite coatings: a review," Surface Coatings Technology, vol. 167, no. 2-3, pp. 113-119, 2003.
[52] D. K. Schroder, Semiconductor material and device characterization. 2006, Third ed. John Wiley & Sons, p. 63.
[53] G. Frank and H. Köstlin, "Electrical properties and defect model of tin-doped indium oxide layers," Applied Physics A, vol. 27, no. 4, pp. 197-206, 1982.
[54] N. Nadaud, N. Lequeux, M. Nanot, J. Jove, and T. Roisnel, "Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12," Journal of Solid State Chemistry, vol. 135, no. 1, pp. 140-148, 1998.
[55] Z. Pei, C. Sun, M. Tan, J. Xiao, D. Guan, R. Huang, and L. Wen, "Optical and electrical properties of direct-current magnetron sputtered ZnO: Al films," Journal of Applied Physics, vol. 90, no. 7, pp. 3432-3436, 2001.
[56] M. Yang, J. Feng, G. Li, and Q. Zhang, "Tungsten-doped In2O3 transparent conductive films with high transmittance in near-infrared region," Journal of Crystal Growth, vol. 310, no. 15, pp. 3474-3477, 2008.
[57] T. Minami, " New n-type transparent conducting oxides," MRS Bulletin, vol. 25, no. 8, pp. 38-44, 2000.
[58] J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, R. Daipuriya, M. Singh, and R. Chandra, "Enhanced optical absorption of Ti thin film: coupled effect of deposition and post-deposition temperatures," JOM, vol. 69, no. 11, pp. 2383-2389, 2017/11/01 2017.
[59] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, "Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique," Journal of Crystal Growth, vol. 268, no. 3, pp. 596-601, 2004.
[60] Z. M. Gibbs, A. LaLonde, and G. J. Snyder, "Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy," New Journal of Physics, vol. 15, no. 7, p. 075020, 2013.
[61] K. H. Kim, K. C. Park, and D. Y. Ma, "Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering," Journal of Applied Physics, vol. 81, no. 12, pp. 7764-7772, 1997.
[62] H. Han, J. W. Mayer, and T. L. Alford, "Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate," Journal of Applied Physics, vol. 99, no. 12, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw