進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201918045600
論文名稱(中文) 指動壓電感測器於同動機械手爪的研製
論文名稱(英文) Design and fabrication of a piezoelectric finger force sensor using PVDF fibers for synchronous motion robotic gripper
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃仕傑
研究生(英文) Shih-Chieh Huang
學號 P16064188
學位類別 碩士
語文別 中文
論文頁數 94頁
口試委員 指導教授-沈聖智
口試委員-林大偉
口試委員-張祥傑
口試委員-林俊成
中文關鍵字 近場電紡  壓電感測器  3D堆疊  同動控制  機械手爪 
英文關鍵字 Near-field Electrospinning  Piezoelectric sensor  3D Stacking Technology  synchronous motion  robotic gripper 
學科別分類
中文摘要 本論文整合3D近場電紡技術,搭配高應變複合基板和電極圖案設計指動壓電感測器。其中,3D近場電紡技術是利用直寫式近場靜電紡絲製程將壓電奈米纖維以直寫方式沉積於基板表面上,並堆疊成3D結構以提升單位面積的壓電性能;高應變複合基板是根據複合基板融合大楊氏模數材料與小楊氏模數材料而成,當基板承受外力發生撓曲時,楊氏模數較大之材料應變量較小,楊氏模數較小之材料有較大的應變量,使覆著其上的壓電奈米纖維產生較多壓電電荷,同時可提升感測手指彎曲的靈敏度和線性度,最大提升約49.4%的靈敏度,取代傳統的幾何結構基板,因幾何結構基板本身的結構力學複雜,難以計算其應變量和調控參數取得最佳效益。接著研究電紡絲製程參數和電極串聯數目對感測器輸出增益的影響,纖維製程的優化提升2.19倍的電壓,而在電極圖案方面,本論文比較單電極、雙電極和三電極三種電極圖案的電性,其中三電極感測器之壓電輸出訊號較單電極感測器高出36%的電性。由實驗成果驗證,本論文所設計之指動壓電感測器具有良好的線性訊號曲線,靈敏度很高,可控制機械手爪作動,且只需配合手指彎曲動作即可同動遠端控制機械手爪抓取目標,未來可望優化此感測器性能並應用於更多可穿戴式裝置上,或隔空操作手臂完成提取任務。
英文摘要 This paper integrates 3D near-field electrospinning technology with high strain composite substrates and electrode patterns to design a piezoelectric finger force sensor. Among them, the 3D near-field electrospinning technology uses a direct write type near-field electrospinning process to deposit piezoelectric nanofibers on the surface of the substrate, and stacks them into a 3D structure to improve the piezoelectric performance per unit area; The high strain composite substrate is formed by fusing a large Young's modulus material and a small Young's modulus material on the composite substrate, so that the piezoelectric nanofibers coated thereon generate more piezoelectric charges, at the same time, can improve sensitivity and linearity of sensing finger bending. When the substrate is flexion by an external force, the material with larger Young's modulus has smaller strain, and the material with smaller Young's modulus has larger strain, which causes the piezoelectric nanofibers overlying it to generate more piezoelectric charge, while improving the sensitivity and linearity of sensing finger bending, replacing the traditional geometric structure substrate. Then study the influence of electrospinning process parameters and the number of series connected electrodes on the output gain of the sensor. It is verified by the experimental results that the piezoelectric finger force sensor designed by this paper has a good linear signal curve with high sensitivity, and the simple finger bending action can control the robotic claw to capture the target at the synchronous motion.
論文目次 中文摘要 I
Extended Abstract II
誌謝 XII
圖目錄 XVI
表目錄 XX
第一章 緒論 1
1-1 前言與動機 1
1-2 研究方法 3
1-3 論文架構 4
第二章 文獻探討 5
2-1 靜電紡絲介紹與研究回顧 5
2-2 壓電纖維感測器 9
2-3 穿戴式裝置 17
第三章 指動壓電感測器設計 24
3-1 人體手部運動模式 24
3-2 高應變複合基板 26
3-3 電極圖案設計 45
第四章 指動壓電感測器製程與性能分析 46
4-1 高分子溶液製備 46
4-2 靜電紡絲實驗 50
4-3 PVDF纖維電性探討 54
4-4 指動壓電感測器電性分析 70
第五章 指動壓電感測器於機械手爪之應用 76
5-1 機械手爪系統之建構 76
5-2 遠端同動控制機械手爪 78
第六章 結論與未來展望 88
6-1 結論 88
6-2 未來展望 89
參考文獻 91

參考文獻 [1] G. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London A, vol. 313, no. 1515, pp. 453-475, 1969.
[2] J. Doshi, D. H. Reneker, “Electrospinning Process and Applications of Electronspun Fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995.
[3] B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy,” ACS Nano, vol. 4, no.7, pp. 3647-3652, 2010.
[4] D. H. Reneker, A. L Yarin, Fong H., S. Koombhongse , “Bending Instability of Electrospinning of Nanofibers”, J. Appl. Phys., vol. 87, pp. 31-45, 2000.
[5] W. Gilbert, “De magnete, magneticisque corporibus, et de magno magnete tellure. Petrvs Short, ” pp. 136-145, 1956.
[6] C. V. Boys, “On the Production, Properties, and Some Suggested Uses of he Finest Threads,” Proceedings of the Physical Society of London, vol. 9, no. 1, pp. 8-17, 1887.
[7] J. F. Cooley, “Apparatus for Electrically Dispersing Fluids,” US Patent Specification 692631, 1902.
[8] W. J. Morton, “Method of Dispersing Fluids,” US Patent Specification 705691, 1902.
[9] A. Formhals, “Process and Apparatus for Preparing Artificial Threads,” US Patent Specification 1975504, 1934.
[10] A. Formhals, “Production of Artificial Fibers,” US Patent Specification 2077373, 1937.
[11] A. Formhals, “Artificial Fiber Construction,” US Patent Specification, 2109333, 1938.
[12] A. Formhals, “Method and Apparatus for the Production of Fibers,” US Patent Specification 2116942, 1938.
[13] A. Formhals, “Method of Producing Artificial Fibers,” US Patent Specification 2158415, 1939.
[14] A. Formhals, “Method and Apparatus for the Production of Artificial Fibers,” US Patent Specification 2158416, 1939.
[15] A. Formhals, “Artificial Thread and Method of Producing Same,” US Patent Specification 2187306, 1940.
[16] A. Formhals, “Production of Artificial Fibers from Fiber Forming Liquids,” US Patent Specification 2323025, 1943.
[17] G. Taylor, “Disintegration of water drops in an electric field,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 280, no. 1382. pp. 383-397, 1964.
[18] G. M. H Meesters, P. H. W Vercoulen, J. C. M Marijnissen, B. Scarlett, “Generation of Micron-Sized Droplets from the Taylor Cone,” J. Aerosol Sci, vol. 23, no.1, pp. 37-49, 1992.
[19] D. H. Reneker, I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology, vol. 7, no. 3, pp. 216-223, 1996.
[20] Nick Tucker, J. Stanger Jonathan, MSc, P. Staiger Mark, Hussam Razzaq, Kathleen Hofman, “The History of the Science and Technology of Electrospinning from 1600 to 1995,” Journal of Engineered Fibers and Fabrics, Special Issue, vol. 7, pp. 63-73, 2012.
[21] D. Numakura, “Advanced Screen Printing Practical Approaches for Printable & Flexible Electronics,” 2008 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference, Taipei, pp. 205-208, 2008.
[22] Li D., G. Ouyang, J. T. McCann, Y. Xia, “Collecting Electrospun Nanofibers with Patterned Electrodes,” Nano Lett, vol. 5, no. 5, pp. 913-918, 2005.
[23] A. Theron, E. Zussmanl, A.L. Yarin, “An Introduction to Electrospinning and Nanofibers,” Nanotechnology, vol. 12, pp. 384-390, 2001.
[24] Sun Daoheng, Chang Chieh, Li Sha, Lin Liwei, “Near-Field Elecrtospinning,” Nano Letters, vol. 6, no. 4, pp. 839-842, 2006.
[25] Maryam Yousefzadeh, Masoud Latifi, Mohammad Amani-Tehran, Wee-Eong Teo, and Seeram Ramakrishna, “A Note on the 3D Structural Design of Electrospun Nanofibers,” Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, pp. 17-23, 2012.
[26] X. Chen, S. Xu, N. Yao, Y. Shi, "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers," Nano letters, vol. 10, no. 6, pp. 2133-2137, 2010.
[27] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano letters, vol. 10, no. 2, pp. 726-731, 2010.
[28] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, C. H Ahn, "Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. Journal of Microelectromechanical Systems," vol. 17, no. 2, pp. 334-341, 2008.
[29] Yu, H., Huang, T., Lu, M., Mao, M., Zhang, Q., Wang, H. "Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity, " Nanotechnology, vol. 24, no. 40, pp. 401-405, 2013.
[30] J. Chang, L. Lin, "Large array electrospun PVDF nanogenerators on a flexible substrate," in proc. 2011 16th International, IEEE, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747-750, 2011.
[31] L. Shi, Y. Zhang, W. Dong, “Research on the relationship between the curvature and the sensitivity of curved PVDF sensor,” In Ninth International Symposium on Precision Engineering Measurement and Instrumentation, International Society for Optics and Photonics, Vol. 9446, pp. 9446, 2015.
[32] Y. K. Fuh, B. S. Wang, C. Y. Tsai, “Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Scientific reports,” vol.7, no. 1, pp. 59-67, 2017.
[33] B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy,” ACS nano, vol. 4, no. 7, pp. 3647-3652, 2010.
[34] A. Kimoto, N. Sugitani, S. Fujisaki, “A multifunctional tactile sensor based on PVDF films for identification of materials,” IEEE Sensors Journal, vol. 10, no. 9, pp. 1508-1513, 2010.
[35] Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, C. Xu, “A flexible piezoelectric force sensor based on PVDF fabrics,” Smart Materials and Structures, vol. 20, no. 4, pp. 045009, 2011.
[36] C. Li, S. Min, L. Yiyang, H. Jinchuan, L. Haohua, “Research on gait measuring method based on PVDF piezoelectric sensors,” In proc. 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, IEEE, pp. 284-287, 2013.
[37] S. H. Park, H. B. Lee, S. M. Yeon, J. Park, Lee, “Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates,” ACS applied materials and interfaces, vol. 8, no. 37, pp. 24773-24781, 2016.
[38] E. Ghafari, N. Lu, “Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications,” Composites Part B: Engineering, vol. 160, pp. 1-9, 2019.
[39] H. Gu, Y. Zhao, M. L. Wang, “A wireless smart PVDF sensor for structural health monitoring,” Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, vol. 12, no. 3‐4, pp. 329-343, 2005.
[40] B. Yang, K. S. Yun, “Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement,” Sensors and Actuators A: Physical, vol. 188, pp. 427-433, 2012.
[41] Van Volkinburg, Kyle, Gregory Washington, “Development of a wearable controller for gesture-recognition-based applications using polyvinylidene fluoride,” IEEE transactions on biomedical circuits and systems, vol. 11, no. 4, pp. 900-909, 2017.
[42] Y. K. Fuh, S. C. Lee, C. Y. Tsai, “Application of Highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices,” Sensors and Actuators A: Physical, vol. 268, pp. 148-154, 2017.
[43] W. Dong, L. Xiao, W. Hu, C. Zhu, Y. Huang, Z. Yin, “Wearable human–machine interface based on PVDF piezoelectric sensor,” Transactions of the Institute of Measurement and Control, vol. 39, no. 4, pp. 398-403, 2017.
[44] P. Neto, J. N. Pires, A. P. Moreira, “Accelerometer-based control of an industrial robotic arm,” In RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, IEEE, pp. 1192-1197, 2009.
[45] H. Khan, A. Razmjou, M. Ebrahimi Warkiani, A. Kottapalli, M. Asadnia, “Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring,” Sensors, vol. 18, no. 2, pp. 418, 2018.
[46] W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, H. Zhang, “Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures,” Nano Energy, vol. 55, pp. 516-525, 2019.
[47] I. D. Johnston, D. K. McCluskey, C. K. L. Tan, M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” Journal of Micromechanics and Microengineering, vol. 24, pp. 17-33, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw