進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1908201916034500
論文名稱(中文) 大氣微電漿輔助超聲波噴霧熱裂解法製備透明氧化導電薄膜之研究
論文名稱(英文) Preparation of Transparent Conductivity Oxide Thin Films by Atmosphere Micro-Plasma Assisted Ultrasonic Spray Pyrolysis
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃柏瑋
研究生(英文) Po-Wei Huang
學號 N16061406
學位類別 碩士
語文別 中文
論文頁數 128頁
口試委員 指導教授-施士塵
口試委員-蘇演良
口試委員-高文顯
中文關鍵字 氧化鋅  鋁參雜氧化鋅  超聲波噴霧熱裂解  大氣微電漿  真空退火 
英文關鍵字 ZnO  AZO  Ultrasonic spray pyrolysis  Atmosphere micro-plasma  Vacuum annealing 
學科別分類
中文摘要 氧化鋅(Zinc Oxide, ZnO)之導電度與穿透率與現今顯示器所使用之氧化銦錫(Indium Tin Oxide, ITO)相近,價格卻相當低廉,被視為其替代材料,為許多研究透明導電薄膜(Transparent Conductive Film, TCO)之重點材料。
本研究首先利用氯化鋅為前驅物經超聲波噴霧式熱裂解法,過程中由於溶劑問題,產生沉澱物,使得薄膜緻密度受其影響。更換溶劑為甲醇,沉澱物問題得以改善,薄膜特性隨之提升。由於氧化鋅本質特性並不優秀,參雜鋁離子以提升其載子濃度,為鋁參雜之氧化鋅薄膜(Al-doped ZnO, AZO)。參雜鋁離子需提高製程溫度,增加晶體之結晶性。使用大氣微電漿輔助製程以降低製程溫度,以此方式製備之薄膜,其電阻率並不佳,其原因推測為常壓電漿所產生之氧自由基吸附於薄膜,使得氧空位下降,造成自由載子濃度下降。利用真空退火熱處理增進薄膜之特性,最後於微電漿輔助超聲波噴霧熱裂解製備鋁參雜濃度為0.5 at.%氧化鋅薄膜經真空輔以氬氣氣氛下退火成功製備出電阻率為5.2 ± 1.1 × 10-3 Ω-cm、穿透率80 %之TCO薄膜。
晶體取向為薄膜之重要指標,高度晶體取向可減少自由載子於晶界之散射,因此(002)晶面比率與薄膜電性具相關關係。本研究未經退火之薄膜之電阻率皆與(002)比率趨勢相近。由於真空退火之薄膜,由於氧之脫附作用,使得(002)晶面強度下降,因此(002)晶面比率不再適用;自由載子濃度於IR波段之吸收可比較出其電性之差異。
英文摘要 Zinc Oxide (ZnO) has similar conductivity and transmittance to Indium Tin Oxide (ITO) used in today's displays, but its price is lower. It is regarded as an alternative material for the Transparent Conductive Oxide Film (TCO) in many studies. In this study, zinc chloride was used as the precursor deposited by ultrasonic spray pyrolysis. During the process, precipitates were formed due to solvent problems, and influenced the consistency of the film. The solvent was replaced with methanol to improve the precipitation problem. Since the intrinsic properties of zinc oxide is not good, the aluminum ion is doped to form an aluminum-doped Zinc Oxide film (AZO) to increase its carrier concentration. The process temperature of doped aluminum ions need to be increased to improve the crystallinity of the crystal. Atmospheric micro-plasma assisted processes are used to reduce process temperatures. However, the film prepared in this manner has a poor electrical resistivity, and it is presumed that the free radicals and reactive oxygen generated by the atmospheric plasma is adsorbed to the film, so that oxygen vacancies are lowered, resulting in a decrease in free carrier concentration. Vacuum annealing heat treatment was used to improve the properties of the film. Finally, ZnO film with Al-doped concentration of 0.5 at.% prepared by micro-plasma-assisted ultrasonic spray pyrolysis was annealed in a vacuum assisted argon atmosphere and the resistivity of TCO film is 5.2 ± 1.1 × 10-3 Ω-cm、transmittance 80% was successfully made.
論文目次 總目錄
口試合格證明 I
摘要 II
致謝 XIV
總目錄 XV
表目錄 XVII
圖目錄 XIX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 研究目標與策略 5
第二章 文獻回顧 7
2-1 透明導電薄膜 7
2-2 氧化鋅 9
2-3 氧化鋅參雜鋁 12
2-4 噴霧式熱裂解法 17
2-4-1 噴霧式熱解機制 17
2-4-2 前驅物與參數設置 21
2-5 前驅物水解沉澱理論 23
2-6 大氣微電漿輔助製程 25
2-6-1 電漿介紹 25
2-6-2 大氣微電漿晶體生長機制 33
2-6-3 大氣微電漿製備導電薄膜技術 35
2-7 真空退火熱處理 37
第三章 實驗內容 39
3-1 實驗目的 39
3-2 實驗簡介 39
3-3 實驗流程 40
3-4 實驗方法 41
3-4-1 基板前處理與前驅物溶液製備 41
3-4-2 超聲波噴霧式熱裂解系統 43
3-4-3 大氣微電漿輔助超聲波熱裂解系統 45
3-4-4 真空退火熱處理 48
3-4-5 薄膜晶體結構分析 50
3-4-6 沉澱物成分分析 53
3-4-7 形貌與元素成分分析 54
3-4-8 薄膜電性分析 56
3-4-9 薄膜穿透率、自由載子與能隙值分析 61
3-5 實驗設備 63
第四章 實驗結果與討論 65
4-1 超聲波噴霧式熱裂解法 65
4-1-1 基板溫度影響 65
4-2 水解沉澱物影響 69
4-2-1 水/乙醇為前驅物溶劑 69
4-2-2 甲醇為前驅物溶劑 72
4-3 參雜鋁離子 78
4-3-1 參雜濃度影響 78
4-3-2 基板溫度對於鋁參雜之影響 82
4-4 大氣微電漿輔助超聲波熱裂解製程 90
4-4-1 氧化鋅薄膜 90
4-4-2 鋁參雜之氧化鋅薄膜 93
4-5 真空退火熱處理 100
4-5-1 氧化鋅薄膜經真空退火熱處理 100
4-5-2 鋁參雜之氧化鋅薄膜經真空退火熱處理 107
第五章 總結 115
5-1 研究重點整理 115
5-2 結論 119
5-3 未來展望 119
參考文獻 120
附錄 127
參考文獻 [1]. K. Baedeker, Über eine eigentümliche Form elektrischen Leitvermögens bei festen Körpern, Annalen der Physik, 334, pp.566-584.(1909).
[2]. G. Rupprecht, Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten, Zeitschrift für Physik, 139, pp.504-517.(1954)
[3]. .HJJ Van Boort, R Groth, Philips Tech Rev. 29, 17.(1968)
[4]. K. Chopra, S. Major, D. Pandya, Transparent conductors—a status review, Thin solid films, 102, pp.1-46.(1983).
[5]. M. Alam, D. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process, Thin solid films, 377, pp.455-459.(2000).
[6]. M.A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis, Materials Research Bulletin, 44, pp.1458-1461.(2009).
[7]. M.J. Alam, D.C. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process, Thin Solid Films, 377-378, pp.455-459. (2000).
[8]. T. Ishida, H. Kobayashi, Y. Nakato, Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by X‐ray photoelectron spectroscopy and work‐function measurements, Journal of applied physics, 73, pp.4344-4350.(1993).
[9]. J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, Electrical, structural, and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition, Applied surface science, 252, pp.4834-4837.(2006).
[10]. F. Kurdesau, G. Khripunov, A. Da Cunha, M. Kaelin, A. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature, Journal of non-crystalline solids, 352, pp.1466-1470.(2006)
[11]. K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Investigation of mechanical properties of transparent conducting oxide thin films, Thin solid films, 443, pp.60-65.(2003).
[12]. M. Mikawa, T. Moriga, Y. Sakakibara, Y. Misaki, K.-i. Murai, I. Nakabayashi, K. Tominaga, Characterization of ZnO–In2O3 transparent conducting films by pulsed laser deposition, Materials research bulletin, 40, pp.1052-1058.(2005)
[13]. A. Nakaruk, C.C. Sorrel, Conceptual model for spray pyrolysis mechanism - fabrication and annealing of titania thin films, Journal of Coatings Technology and Research. Res., 7(5), pp.665-676.(2010).
[14]. J. Viguie, J. Spitz, Chemical vapor deposition at low temperatures, J. Electrochem. Soc, 122, pp.585-588.(1975).
[15]. W. Siefert, Properties of thin In2O3 and SnO2 films prepared by corona spray pyrolysis, and a discussion of the spray pyrolysis process, Thin solid films, 120, pp.275-282.(1984)
[16]. X.J. Qin, L. Zhao, G.J. Shao, N. Wang, Influence of solvents on deposition mechanism of Al-doped ZnO films synthesized by cold wall aerosol-assisted chemical vapor deposition, Thin Solid Films, 542, pp.144-149.(2013).
[17]. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of applied physics, 98, pp.11.(2005).
[18]. M. Vaseem, A. Umar, Y.-B. Hahn, ZnO nanoparticles: growth, properties, and applications, Metal oxide nanostructures and their applications, 5, pp.1-36.(2010).
[19]. V. Musat, B. Teixeira, E. Fortunato, R. Monteiro, P. Vilarinho, Al-doped ZnO thin films by sol–gel method, Surface and Coatings technology, 180, pp.659-662.(2004).
[20]. S. Desgreniers, High-density phases of ZnO: Structural and compressive parameters, Physical Review B, 58, pp.14102.(1998).
[21]. T. Minami, New n-type transparent conducting oxides, MRS bulletin, 25, pp.38-44.(2000).
[22]. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Japanese Journal of Applied Physics, 23, pp.L280.(1984).
[23]. H. Serier, M. Gaudon, M. Ménétrier, Al-doped ZnO powdered materials: Al solubility limit and IR absorption properties, Solid State Sciences, 11, pp.1192-1197.(2009).
[24]. P.S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and physics, 59, pp.185-198.(1999).
[25]. E. Bacaksiz, M. Parlak, M. Tomakin, A. O¨ zc¸elik, M. Karakız, M. Altunbas¸, The effects of zinc nitrate, zinc acetate and zinc chloride precursors oninvestigation of structural and optical properties of ZnO thin films, Journal of Alloys and Compounds, 466, pp.447–450.(2008) .
[26]. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zincoxide thin films by post growth annealing treatment, Applied Surface Science, 367, pp.52-58.(2016) .
[27]. F. Maldonado, A. Stashans, Al-doped ZnO Electronic, electrical and structural properties, 71, pp.784-787.(2010) .
[28]. R. Ghosh, G. Paul, D. Basak, Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films, Materials research bulletin, 40, pp.1905-1914.(2005).
[29]. B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE transactions on plasma science, 19, pp.1063-1077.(1991)
[30]. A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE transactions on plasma science, 26, pp.1685-1694.(1998).
[31]. S. Bornholdt, M. Wolter, H. Kersten, Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition, The European Physical Journal D, 60, pp.653-660.(2010).
[32]. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61, pp.2-30.(2006).
[33]. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61, pp.2-30.(2006).
[34]. Y.-w. Hsu, H.-C. Li, Y.-J. Yang, C.-c. Hsu, Deposition of zinc oxide thin films by an atmospheric pressure plasma jet, Thin Solid Films, 519, pp.3095-3099.(2011).
[35]. C. Hsu, S. Lien, Y. Yang, J. Chen, I. Cheng, C. Hsu, Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process, Thin Solid Films, 570, pp.423-428.(2014)
[36]. N. Renaut, M. Jimenez, J. Dutroncy, M. Traisnel, High speed atmospheric plasma deposition of transparent ZnO thin films without post-deposition annealing, Thin Solid Films, 589, pp.161-164.(2015).
[37]. O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, A review of recent applications of atmospheric pressure plasma jets for materials processing, Journal of Coatings Technology and Research, 12, pp.225-235.(2015).
[38]. H.W. Lee, S.H. Nam, A.-A.H. Mohamed, G.C. Kim, J.K. Lee, Atmospheric Pressure Plasma Jet Composed of Three Electrodes: Application to Tooth Bleaching, Plasma Processes and Polymers, 7, pp.274-280.(2010).
[39]. G. Isbary, G. Morfill, H.U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients, The British journal of dermatology, 163, pp.78-82.(2010).
[40]. J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B.D. Michael, Y. Wang, Study on hydrophilicity of polymer surfaces improved by plasma treatment, Applied Surface Science, 252, pp.3375-3379.(2006).
[41]. P. Brunet, R. Rincón, J. Margot, F. Massines, M. Chaker, Deposition of homogeneous carbon-TiO2 composites by atmospheric pressure DBD, Plasma Process and Polymers, 9999, pp.1-8.(2016) .
[42]. D. Mariotti, J. Patel, V. Švrček, P. Maguire, Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering, Plasma Processes and Polymers, 9, pp.11‐12. (2012).
[43]. N. Shirai, T. Yoshida, S. Uchida, F. Tochikubo, Synthesis of magnetic nanoparticles by atmospheric-pressure glow discharge plasma-assisted electrolysis, Japanese Journal of Applied Physics, 56, pp.076201.(2017).
[44]. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries, Journal of Applied Physics, 108, pp.103721.(2010).
[45]. R. Buonsanti, A. Llordes, S. Aloni, B.A. Helms, D.J. Milliron, Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals, Nano letters, 11, pp.4706-4710.(2011).
[46]. Y. Liu, Y. Li, H. Zeng, ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing, Journal of Nanomaterials, 2013, pp.1-9.(2013).
[47]. J.-H. Lee, B.-O. Park, Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment, Materials Science and Engineering: B, 106, pp.242-245.(2004).
[48]. T. Kozawa, A. Onda, K. Yanagisawa, A. Kishi, Y. Masuda, Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride and crystal growth of zinc oxide, Journal of Solid State Chemistry, 184, pp.589-596.(2011).
[49]. A. Mraihi, N. Merbahi, M. Yousfi, A. Abahazem, O. Eichwald, Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure, Plasma Sources Science and Technology, 20, pp.065002.(2011).
[50]. J.S. Chang, P.A. Lawless, T. Yamamoto, Corona Discharge Processes Analysis of ionization wave dynamics in low temperature plasma jets from fluid modeling supported by experimental investigations, IEEE Transactions on Plasma Science, 19, pp.1152-1166.(1991).
[51]. Y. Moriguchi, D.S. Lee, R. Chijimatsu, K. Thamina, K. Masuda, D. Itsuki, H. Yoshikawa, S. Hamaguchi, A. Myoui, Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration, PloS one, 13, pp.e0194303.(2018).
[52]. L.J. van der PAUW, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, 13, pp.1-9. (1958).
[53]. L.J. Brillson, Y. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics, 109, pp.121301.(2011) .
[54]. A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56, pp.978-982.(1939).
[55]. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, 3, pp.37-46.(1968).
[56]. V. Musat, B. Teixeira, E. Fortunato, R. Monteiro, P. Vilarinho, Al-doped ZnO thin films by sol–gel method, Surface and Coatings technology, 180, pp.659-662.(2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw