進階搜尋


下載電子全文  
系統識別號 U0026-1908201915061200
論文名稱(中文) 反算設計問題於波狀鰭片之最佳形狀預測
論文名稱(英文) Inverse Design Problems in Estimating the Optimal Wavy-shaped fins
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 童柏維
研究生(英文) Po-Wei Tung
學號 P16064057
學位類別 碩士
語文別 中文
論文頁數 93頁
口試委員 指導教授-黃正弘
口試委員-陳寒濤
口試委員-艾和昌
口試委員-李弘毅
中文關鍵字 拉凡格氏法  波狀鰭片  反算設計問題  最佳化設計 
英文關鍵字 Levenberg-Marquardt Method  Wavy-shaped fins  Inverse design problems  Optimization design 
學科別分類
中文摘要 本論文主要探討波狀外形設計於鰭片之應用,利用商業模擬軟體ESI CFD-ACE+進行模擬分析,並搭配拉凡格氏法(Levenberg-Marquardt Method)將模型之設計參數最佳化,最後再利用後處理軟體ESI CFD-VIEW分析數值結果。本論文之模型均在固定體積之條件下進行比較。
論文第二章以文獻[1]為基礎,探討反置鰭片(Inverted fins)形狀設計對於系統最高溫度之影響,並以規則正弦波(Regular Sine Wave)進行外形設計,以振幅及角頻率為設計參數。在本章中以邊界等溫及邊界對流等兩種邊界條件進行最佳化設計,以系統均溫極小化為目標,期望可得到極小化之系統最高溫度。兩種邊界條件設計中均比照文獻[1],分別以不同分枝數N=1、N=2、N=3、N=4進行最佳化設計,將反算後之結果與其它形狀設計之文獻做比較均有顯著的溫降效果。然而為證明本數值方法之有效性,本論文另外以系統溫降20%與40%進行設計,同樣可求得目標均溫下之設計參數。
論文第三章將此波狀設計運用於傳統板式鰭片,不同於第二章,在此參考文獻[2]之設計,以變形正弦波(Deformed Sine Wave)作為外形設計,即於振幅及角頻率兩參數中加入權重係數以生成曲線。此部分內容以底板均溫極小化為目標,期望藉由曲線外形之改變使鰭片達到更好的散熱效果,文章中亦有與規則正弦波設計之鰭片做比較,且除溫度外也針對變形前後之鰭片壓降做探討。結果顯示,此設計不僅能有效使底板均溫下降,最佳化之鰭片設計亦有減少壓降之效果。
在論文最後委託工廠將鰭片以放電線切割加工,並以風洞、電熱片與熱像儀完成本實驗,將熱像儀所紀錄鰭片底板之表面溫度與商業套裝軟體CFD-ACE+模擬之理論值做比對,結果顯示實驗值與本模擬有非常相近之結果。
英文摘要 A shape design problems in determining the optimal geometry of wavy-shaped inverted fins and WPFHS (Wavy-shaped Plate Fin Heat Sink) are discussed in this work in two and three-dimensional domains, respectively. Besides, all the cases are investigated under a fixed volume condition. The commercial software CFD-ACE+ and the Levenberg-Marquardt Method (LMM) are utilized to estimate the optimum design variables.
Based on literature [1], the objective of chapter two is to obtain the optimal shape design of a wavy-shaped cavities penetrated in to a heat generating body by minimizing the average temperature (Tave) of the system. The regular sinusoidal function is considered as a fin profile, and the design variables are amplitude, A, and angular frequency, ω.
In chapter three, the deformed sinusoidal function is adopted on WPFHS. According to literature [2], the changeable sine curve with increasing amplitude and decreasing wavelength simultaneously can enhance the performance of heat sink. In this thesis, the weighting coefficients of amplitude, a, and angular frequency, b, are considered as the design variables for minimizing the average temperature of base plate (Tb).
The results shows that the wavy-shaped design can remarkably enhanced the performance of fin temperature. Finally, experimental results of WPFHS shows the conformity with the numerical data. Also, the temperature distributions between experimental and numerical results are in an excellent consistency. The inverse problems utilizing the Levenberg-Marquardt Method (LMM) can estimate the optimal fin shape successfully and efficiently.
論文目次 目錄:
摘要I
英文延伸摘要III
致謝VII
目錄VIII
表目錄X
圖目錄XI
符號說明XV
第一章 緒論1
1-1前言1
1-2研究背景與目的1
1-3研究方法3
1-4文獻回顧5
第二章 反置鰭片於指定系統均溫之最佳形狀預測9
2-1直接解問題9
2-2 波狀外形設計11
2-3拉凡格氏法之極小化過程13
2-4數值計算流程16
2-5結果與討論16
2-6結論23
第三章 波狀板式散熱鰭片最佳權重係數之形狀預測40
3-1 直接解問題40
3-2波狀外形設計42
3-3拉凡格氏法之極小化過程44
3-4數值計算流程46
3-5結果與討論47
第四章 實驗驗證58
4-1 實驗原理58
4-2 實驗設備58
4-3 實驗步驟62
4-4 結果與討論63
第五章 結論89
參考文獻 91
參考文獻 [1]. M.R. Hajmohammadi, Optimal design of tree-shaped inverted fins, International Journal of Heat and Mass Transfer, Vol.116, 1352-1360, 2018.
[2]. L. Lin, J. Zhao, G. Lu, X.D. Wang, W.M. Yan, Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude, International Journal of Thermal Sciences, Vol.118, 423-434, 2017.
[3]. ESI CFD-ACE+ Training Manual, Basic 2016.
[4]. CFD-GEOM_V2013.0_User_Manual.
[5]. CFD-ACE+_V2013.0_Modules_Manual.
[6]. C. Biserni, L.A.O. Rocha, A. Bejan, Inverted fins: geometric optimization of the intrusion into a conducting wall, International Journal of Heat and Mass Transfer, Vol.47, 2577-2586, 2004.
[7]. C. Biserni, L.A.O Rocha, G. Stanescu, E. Lorenzini, Constructal H-shaped cavities according to Bejan’s theory, International Journal of Heat and Mass Transfer, Vol.50, 2132-2138, 2007.
[8]. G. Lorenzini, L.A.O. Rocha, Geometric optimization of T-Y-shaped cavity according to Constructal design, International Journal of Heat and Mass Transfer, Vol.52, 4683-4688, 2009.
[9]. G. Lorenzini, C. Biserni, L.A.O. Rocha, Geometric optimization of isothermal cavities according to Bejan’s theory, International Journal of Heat and Mass Transfer, Vol.54, 3868-3873, 2011.
[10]. G. Lorenzini, C. Biserni, F.L. Garcia, L.A.O. Rocha, Geometric optimization of a convective T-shaped cavity on the basis of constructal theory, International Journal of Heat and Mass Transfer, Vol.55, 6951-6958, 2012.
[11]. G. Lorenzini, C. Biserni, L.A.O. Rocha, Geometric optimization of X-shaped cavities and pathways according to Bejan’s theory: Comparative analysis, International Journal of Heat and Mass Transfer, Vol.73, 1-8, 2014.
[12]. A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge University Press, 2000.
[13]. M.R. Hajmohammadi, Introducing a ψ-shaped cavity for cooling a heat generation medium, International Journal of Thermal Sciences, Vol.121, 204-212, 2017.
[14]. Z. Xie, L. Chen, F. Sun, Geometry optimization of T-shaped cavities according to constructal theory, Mathematical and Computer Modelling, Vol.52, 1538-1546, 2010.
[15]. C. Biserni, F.L. Dalpiaz, T.M. Fagundes, L.A.O Rocha, Constructal design of T-shaped morphing fins coupled with a trapezoidal basement: A numerical investigation by means of exhaustive search and genetic algorithm, International Journal of Heat and Mass Transfer, Vol.109, 73-81, 2017.
[16]. G. Lorenzini, E.X. Barreto, C.C. Beckel, P.S. Schneider, L.A. Isoldi, E.D. dos Santos, L.O.A. Rocha, Geometrical evaluation of T-shaped high conductive pathway with thermal contact resistance for cooling of heat-generating medium, International Journal of Heat and Mass Transfer, Vol.108, 1884-1893, 2017.
[17]. C.H. Huang, Y.H. Chen, H.Y. Li, An impingement heat sink module design problem in determining optimal non-uniform fin widths, International Journal of Heat and Mass Transfer, Vol.67, 992-1006, 2013.
[18]. D.M. Marquardt, An algorithm for least-squares estimation of nonlinear parameters , J. Soc. Indust. Appl. Math, Vol.11, 431-441, 1963.
[19]. C.H. Huang, G.J. Wang, A design problem to estimate the optimal fin shape of LED lighting heat sinks, International Journal of Heat and Mass Transfer, Vol.106, 1205-1217, 2017.
[20]. G. Fabbri, Optimization of heat transfer through finned dissipators cooled by laminar flow, International Journal of Heat and Mass Transfer, Vol.19, 644-654, 1998.
[21]. D. Copiello, G. Fabbri, Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins, International Journal of Heat and Mass Transfer, Vol.52, 1167-1176, 2009.
[22]. Y. Ge, S. Wang, Z. Liu, W. Lu, Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method, Applied Thermal Engineering, Vol.148, 120-128, 2019.
[23]. G. Lu, J. Zhao, L. Lin, X.D. Wang, W.M. Yan, A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins, International Journal of Heat and Mass Transfer, Vol.111, 1071-1078, 2017.
[24]. J.A. Esfahani, M. Akbarzadeh, S. Rashidi, M.A. Rosen, R. Ellahi, Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat, International Journal of Heat and Mass Transfer, Vol.109, 1162-1171, 2017.
[25]. D. Yu, W. Jeon, S. J. Kim, Analytic solutions of the friction factor and the Nusselt number for the low-Reynolds number flow between two wavy plate fins, International Journal of Heat and Mass Transfer, Vol.115, 307-316, 2017.
[26]. Y. Xue, Z. Ge, X. Du, L. Yang, On the Heat Transfer Enhancement of Plate Fin Heat Exchanger, Energies, Vol.11, 1398
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw