進階搜尋


下載電子全文  
系統識別號 U0026-1908201912573100
論文名稱(中文) 智慧路邊停車收費系統使用行為意圖之研究-以台南為例
論文名稱(英文) A Study of Intention to Use for Intelligent Road-side Parking System in Tainan, Taiwan
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 107
學期 2
出版年 108
研究生(中文) 周芳伃
研究生(英文) Fang-Yu Chou
學號 R56061114
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 指導教授-林佐鼎
口試委員-蔡東峻
口試委員-楊宗璟
中文關鍵字 智慧路邊停車收費系統  探索性因素分析  驗證性因素分析  隱私態度 
英文關鍵字 Intelligent Road-side Parking System  Exploratory Factor Analysis  Confirmatory Factor Analysis  Privacy Attitude  System Security 
學科別分類
中文摘要 台灣近年來推行智慧都市,透過大數據、人工智慧、物聯網的結合以改善目前都市地區紊亂的停車問題,然而,此為一新型系統,以往也未曾於全球其他國家進行如此大規模的推動,因此,期望能透過探討民眾對於智慧路邊停車收費系統的使用意願進而提升智慧路邊停車收費系統的使用效率,以此改善台灣都市的交通問題。
本研究採用結構方程模型進行問卷設計,共回收385份有效問卷,其中284份為網路問卷,101份為紙本問卷,問卷一共包含13個構面以及先前經驗與社經屬性,經過探索性因素分析與驗證性因素分析後,刪減至8個構面,而模型結果發現,社會影響與感知安全將會影響民眾對於智慧路邊停車收費系統的感知有用性,而隱私態度則與以往文獻假設相反,呈現正向的影響,在本研究中,感知壓力並未顯著影響感知易用性,其餘構面則驗證以往文獻之假設,最後,本研究將根據研究結果提出建議,以供未來政府單位與私人公司制定政策與市場策略進行參考。
英文摘要 In recent years, Taiwan has promoted “smart city” to improve the serious parking problem in the current urban areas through the combination of big data, artificial intelligence and the Internet of Things. However, intelligent parking system has not been promoted in such a large scale in other countries in the world.
Therefore, in this research, we expect to improve the efficiency of the use of Intelligent Road-side Parking Systems Tainan by exploring the public's willingness to use intelligent smart parking systems.
In this study, a structural equation model is used to design a questionnaire. A total of 385 valid questionnaires were collected, of which 284 were online questionnaires and 101 were paper questionnaires. The questionnaire contained 13 facets, previous experience and social and economic attributes. In this research, we use exploratory factor analysis to reduce the facets to 8 facets, and the model find that social impact and perceived security will affect people's perceived usefulness to the intelligent road-side parking systems, while privacy attitude is contrary to previous literature assumptions, having the positive impact. The other facets verify the assumptions of the previous literature. Finally, we make recommendations based on the research results to the government units and private companies, which are for developing policy and market strategies for referencing in future.
論文目次 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究範圍與限制 6
1.4 研究方法 6
1.5 研究內容與流程 7
第二章 文獻回顧 9
2.1 路邊停車巡航行為與智慧停車服務定義及特性 9
2.2 國內外智慧路邊停車收費系統發展與現況 11
2.3 選擇路邊停車位之相關研究 16
2.4 消費者信任程度之相關研究 21
2.5 提供隱私之相關研究 24
2.6 影響隱私態度之相關研究 27
2.7 科技接受模型之發展 31
2.8 小結 36
第三章 研究方法 37
3.1 科技接受模型 37
3.2 問卷設計 44
3.2.1 先前經驗 44
3.2.2 智慧路邊停車收費系統之概況說明 45
3.2.3 資料取得方式 51
3.3 信度分析 51
3.4 結構方程模型 51
第四章 實證分析 53
4.1 問卷前測 53
4.2 問卷發放 55
4.3 樣本資料分析 55
4.3.1 先前經驗 55
4.3.2 社會經濟屬性 58
4.3.3 正式問卷信度分析 60
4.4 探索性因素分析 61
4.5 驗證性因素分析 66
4.6 結構方程模型分析 71
4.7 敘述性統計分析 77
第五章 結論與建議 83
5.1 結論 83
5.1.1 先前經驗與社經特性之影響 83
5.1.2 結構方程模型構面之影響 84
5.2 建議 85
5.2.1 提升智慧路邊停車收費系統使用意願之建議 85
5.2.2 後續研究改善之建議 85
參考文獻 87
一、 中文部分 87
二、 英文部分 88
附錄一、正式問卷 97
附錄二、前測信度分析 103
附錄三、正式問卷信度分析 106
附錄四、探索性因素分析結果 109
附錄五、探索性因素分析之信度分析 115
參考文獻 1. 許仲仁(2007),「智慧型路邊停車收費管理系統」,都市交通,第22卷第1期,頁97-105。
2. 任維廉、徐士弘、李偉義、廖宜靖(2007),「新的路邊停車收費設備之使用者接受意向影響因素之探討」,都市交通,第22卷第1期,頁1-17.
3. 謝旭昇、夏晧清、葉光毅(2015),「考量社會互動下之機慢車停車地點選擇行為模式之建構」,都市與計劃,第42卷第3期,頁325-362。
4. 謝旭昇、夏晧清、葉光毅(2016),「導入社會互動效果之集體行為均衡移轉門檻分析: 以機慢車停車地點選擇行為為例」,都市與計劃,第43卷第4期,頁395-435.
5. 焦志强、靳文舟、郝小妮(2017),「综合效益最優的路邊停車價格研究」,公路交通科技,第34卷第9期,頁109-115。
1. Ajzen, I. (1991), “The theory of planned behavior.” Organizational Behavior and Human Decision Processes, Vol. 50, pp. 179–211.
2. Axhausen, K. W., Polak, J. W., Boltze, M., & Puzicha, J. (1994), “Effectiveness of the parking guidance information system in Frankfurt am Main.” Traffic Engineering+ Control, Vol. 35, No. 5, pp. 304-309.
3. Agarwal, R., & Prasad, J. (1998), “A conceptual and operational definition of personal innovativeness in the domain of information technology.” Information systems research, Vol. 9, No.2, pp. 204-215.
4. Arnott, R., & Inci, E. (2006), “An integrated model of downtown parking and traffic congestion.” Journal of Urban Economics, Vol. 60, No.3, pp. 418-442.
5. Abratt, R., & Kleyn, N. (2012), “Corporate identity, corporate branding and corporate reputations: Reconciliation and integration.” European Journal of Marketing, Vol. 46, No.7/8, pp. 1048-1063.
6. Barnes, S. B. (2006), “A privacy paradox: Social networking in the United States.” First Monday, Vol. 11 (9),
7. Bagozzi, R. P., & Yi, Y. (2012), “Specification, evaluation, and interpretation of structural equation models.” Journal of the academy of marketing science, Vol. 40, No.1, pp. 8-34.
8. Brooke, S., Ison, S., & Quddus, M. (2014), “On-street parking search: Review and future research direction.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2469, pp. 65-75.
9. Brooke, S., Ison, S., & Quddus, M. (2014b): ‘Parking choice’, in S. G. Ison and C. Mulley (eds, Parking: Issues and Policies, Transport and Sustainability, Vol. 5, Emerald Group Publishing, Bingley, UK.
10. Beck, M. J., Rose, J. M., & Merkert, R. (2018), “Exploring Perceived Safety, Privacy, and Distrust on Air Travel Choice in the Context of Differing Passenger Screening Procedures.” Journal of Travel Research, Vol. 57, No.4, pp. 495-512.
11. Brooke, S., Ison, S., & Quddus, M. (2018), “Analysing Parking Search ('Cruising') Time Using Generalised Multilevel Structural Equation Modelling.” Journal of Transport Economics and Policy (JTEP, Vol. 52 , No.3, pp. 202-220.
12. Conway, J. M., & Huffcutt, A. I. (2003), “A review and evaluation of exploratory factor analysis practices in organizational research.” Organizational research methods, Vol. 6, No.2, pp. 147-168.
13. Calisir, F., Altin Gumussoy, C., Bayraktaroglu, A. E., & Karaali, D. (2014), “Predicting the intention to use a web‐based learning system: Perceived content quality, anxiety, perceived system quality, image, and the technology acceptance model.” Human Factors and Ergonomics in Manufacturing & Service Industries, Vol. 24, No.5, pp. 515-531.
14. Chaniotakis, E., & Pel, A. J. (2015), “Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment.” Transportation Research Part A: Policy and Practice, Vol. 82, pp. 228-239.
15. Chen, C. F., Xu, X., & Arpan, L. (2017), “Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States.” Energy research & social science, Vol. 25, pp. 93-104.
16. Cao, J., & Menendez, M. (2018), “Quantification of potential cruising time savings through intelligent parking services.” Transportation Research Part A: Policy and Practice, Vol. 116, pp. 151-165.
17. Davis, F. D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology.” MIS quarterly, pp. 319-340.
18. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992), “Extrinsic and intrinsic motivation to use computers in the workplace 1”. Journal of applied social psychology, Vol. 22, No.14, pp. 1111-1132.
19. Dienlin, T., & Trepte, S. (2015), “Is the privacy paradox a relic of the past? An in‐depth analysis of privacy attitudes and privacy behaviors.” European Journal of Social Psychology, Vol. 45, No.3, 285-297.
20. Ding, H., Guo, H. W., Wang, W. H., & Zhang, Y. J. (2015), “Analyzing Behavior of Cruising for On-Street Parking under the Influence of Economic Leverage.” In CICTP 2015, pp. 2525-2536.
21. Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017), “Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model.” Information Systems Frontiers, pp. 1-16.
22. Fornell, C., & Larcker, D. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error.” Journal of marketing research, Vol. 18, No.1, pp. 39-50.
23. Flora, D. B., & Curran, P. J. (2004), “An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data.” Psychological methods, Vol. 9, No.4, pp. 466.
24. Gurtner, S., Reinhardt, R., & Soyez, K. (2014), “Designing mobile business applications for different age groups.” Technological Forecasting and Social Change, Vol. 88, pp. 177-188.
25. Guo, W., Zhang, Y., & Li, L. (2015), “The integration of CPS, CPSS, and ITS: A focus on data.” Tsinghua Science and Technology, Vol. 20, No.4, pp. 327-335.
26. Hartmann, M., Klink, J., & Simons, J. (2015), “Cause related marketing in the German retail sector: Exploring the role of consumers’ trust.” Food Policy, Vol. 52, pp. 108-114.
27. Jang, S., & Lee, C. (2018), “The Impact of Location-Based Service Factors on Usage Intentions for Technology Acceptance: The Moderating Effect of Innovativeness.” Sustainability, Vol. 10, No.6, pp. 1876.
28. Kim, C., Oh, E., Shin, N., & Chae, M. (2009), “An empirical investigation of factors affecting ubiquitous computing use and U-business value.” International Journal of Information Management, Vol. 29, No.6, pp. 436-448.
29. Kezer, M., Sevi, B., Cemalcilar, Z., & Baruh, L. (2016), “Age differences in privacy attitudes, literacy and privacy management on Facebook.” Cyberpsychology: Journal of Psychosocial Research on Cyberspace, Vol. 10, No.1.
30. Kwee-Meier, S. T., Altendorf, E., Mertens, A., & Schlick, C. M. (2016, September), “Safety-Enhancing Locating Wearables on Passenger Ships: Privacy and Security Perceptions by the Elderly.” In IFIP International Conference on Human Choice and Computers (pp. 34-48), Springer, Cham.
31. Kroesen, M., Handy, S., & Chorus, C. (2017), “Do attitudes cause behavior or vice versa? An alternative conceptualization of the attitude-behavior relationship in travel behavior modeling.” Transportation Research Part A: Policy and Practice, Vol. 101, pp. 190-202.
32. Lee, Y. H., Hsieh, Y. C., & Chen, Y. H. (2013), “An investigation of employees' use of e-learning systems: applying the technology acceptance model.” Behavior & Information Technology, Vol. 32, No.2, pp. 173-189.
33. Liu, W., & Geroliminis, N. (2016), “Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach.” Transportation Research Part B: Methodological, Vol. 93, pp. 470-494.
34. Maruyama, G., & McGarvey, B. (1980), “Evaluating causal models: An application of maximum-likelihood analysis of structural equations.” Psychological Bulletin, Vol. 87, No.3, pp. 502.
35. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995), “An integrative model of organizational trust.” Academy of management review, Vol. 20 , No.3, pp. 709-734.
36. Millard-Ball, A., Weinberger, R. R., & Hampshire, R. C. (2014), “Is the curb 80% full or 20% empty? Assessing the impacts of San Francisco’s parking pricing experiment.” Transportation Research Part A: Policy and Practice, Vol. 63, pp. 76-92.
37. Margulis, S. T. (2011), “Three theories of privacy: An overview.” In Privacy online (pp. 9-17), Springer, Berlin, Heidelberg.
38. Martínez-Torres, M. D. R., Díaz-Fernández, M. D. C., Toral, S. L., & Barrero, F. (2015), “The moderating role of prior experience in technological acceptance models for ubiquitous computing services in urban environments.” Technological Forecasting and Social Change, Vol. 91, pp. 146-160.
39. Marangunić, N., & Granić, A. (2015), “Technology acceptance model: a literature review from 1986 to 2013.” Universal Access in the Information Society, Vol. 14, No.1, pp. 81-95.
40. Min, J., & Kim, B. (2015), “How are people enticed to disclose personal information despite privacy concerns in social network sites? The calculus between benefit and cost.” Journal of the Association for Information Science and Technology, Vol. 66, No.4, pp. 839-857.
41. Nawaz, S., Efstratiou, C., & Mascolo, C. (2013, September), “Parksense: A smartphone based sensing system for on-street parking.” In Proceedings of the 19th annual international conference on Mobile computing & networking (pp. 75-86), ACM.
42. Nourinejad, M., & Roorda, M. J. (2017), “Impact of hourly parking pricing on travel demand.” Transportation Research Part A: Policy and Practice, Vol. 98, pp. 28-45.
43. Min, S., So, K. K. F., & Jeong, M. (2018), “Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model.” Journal of Travel & Tourism Marketing, pp. 1-14.
44. Oliveira, T., Alhinho, M., Rita, P., & Dhillon, G. (2017), “Modelling and testing consumer trust dimensions in e-commerce.” Computers in Human Behavior, Vol. 71, pp. 153-164.
45. Petronio, S. (2002), “Boundaries of Privacy: Dialectics of Disclosure.” (State University of New York Press, Albany, NY).
46. Park, E., & Kim, K. J. (2014), “An integrated adoption model of mobile cloud services: exploration of key determinants and extension of technology acceptance model.” Telematics and Informatics, Vol. 31, No.3, pp. 376-385.
47. Park, J., Lee, H., & Kim, C. (2014), “Corporate social responsibilities, consumer trust and corporate reputation: South Korean consumers' perspectives.” Journal of Business Research, Vol. 67, No.3, pp. 295-302.
48. Palos-Sanchez, P. R., Hernandez-Mogollon, J. M., & Campon-Cerro, A. M. (2017), “The behavioral response to location based services: an examination of the influence of social and environmental benefits, and privacy.” Sustainability, Vol. 9, No.11, pp. 1988.
49. Qian, Z. S., & Rajagopal, R. (2013), “Optimal parking pricing in general networks with provision of occupancy information.” Procedia-Social and Behavioral Sciences, Vol. 80, pp. 779-805.
50. Rogers Everett, M. (1995), Diffusion of innovations. New York, 12.
51. Reina, D. G., Marin, S. T., Bessis, N., Barrero, F., & Asimakopoulou, E. (2013), “An evolutionary computation approach for optimizing connectivity in disaster response scenarios.” Applied Soft Computing, Vol. 13, No.2, pp. 833-845.
52. Raschke, R. L., Krishen, A. S., & Kachroo, P. (2014), “Understanding the components of information privacy threats for location-based services.” Journal of Information Systems, Vol. 28, No.1, pp. 227-242.
53. Ratten, V. (2015), “A cross-cultural comparison of online behavioural advertising knowledge, online privacy concerns and social networking using the technology acceptance model and social cognitive theory.” Journal of Science & Technology Policy Management, Vol. 6, No.1, pp. 25-36.
54. Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006), “Reporting structural equation modeling and confirmatory factor analysis results: A review.” The Journal of educational research, Vol. 99, No.6, pp. 323-338.
55. Shoup, D. C. (2006), “Cruising for parking.” Transport Policy, Vol. 13, No.6, pp. 479-486.
56. Saghafi, F., Moghaddam, E. N., & Aslani, A. (2017), “Examining effective factors in initial acceptance of high-tech localized technologies: Xamin, Iranian localized operating system.” Technological Forecasting and Social Change, Vol. 122, pp. 275-288.
57. Scherer, R., Siddiq, F., & Tondeur, J. (2019), “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education.” Computers & Education, Vol. 128, pp. 13-35.
58. Taddicken, M. (2014), “The ‘privacy paradox’ in the social web: The impact of privacy concerns, individual characteristics, and the perceived social relevance on different forms of self-disclosure.” Journal of Computer-Mediated Communication, Vol. 19, No.2, pp. 248-273.
59. Tarhini, A., Hone, K., Liu, X., & Tarhini, T. (2017), “Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model.” Interactive Learning Environments, Vol. 25, No.3, pp. 306-328.
60. Vickrey, W. (1954), “The economizing of curb parking space.” Traffic engineering, Vol. 29, No.1, pp. 62-67.
61. Venkatesh, V. (2000), “Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model.” Information systems research, Vol. 11, No.4, pp. 342-365.
62. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003), “User acceptance of information technology: Toward a unified view.” MIS quarterly, pp. 425-478.
63. Van Raaij, E. M., & Schepers, J. J. (2008), “The acceptance and use of a virtual learning environment in China.” Computers & Education, Vol. 50, No.3, pp. 838-852.
64. Van Ommeren, J. N., Wentink, D., & Rietveld, P. (2012), “Empirical evidence on cruising for parking.” Transportation Research Part A: Policy and Practice, Vol. 46, No.1, pp. 123-130.
65. Wang, Y., Lo, H. P., & Hui, Y. V. (2003), “The antecedents of service quality and product quality and their influences on bank reputation: evidence from the banking industry in China.” Managing Service Quality: An International Journal, Vol. 13, No.1, pp. 72-83.
66. Walsh, G., & Beatty, S. E. (2007), “Customer-based corporate reputation of a service firm: scale development and validation.” Journal of the academy of marketing science, Vol. 35, No.1, pp. 127-143.
67. Wu, B., & Chen, X. (2017), “Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model.” Computers in Human Behavior, Vol. 67, pp. 221-232.
68. Xu, H., Luo, X. R., Carroll, J. M., & Rosson, M. B. (2011), “The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing.” Decision support systems, Vol. 51, No.1, pp. 42-52.
69. Yousif, S. (1999), “A study into on-street parking: Effects on traffic congestion.” Traffic Engineering and Control, Vol. 40, pp. 424-427.
70. Yang, Q., Pang, C., Liu, L., Yen, D. C., & Tarn, J. M. (2015), “Exploring consumer perceived risk and trust for online payments: An empirical study in China’s younger generation.” Computers in Human Behavior, Vol. 50, pp. 9-24.
71. Zhou, T. (2011), “The impact of privacy concern on user adoption of location-based services.” Industrial Management & Data Systems, Vol. 111, No.2, pp. 212-226.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw